Visualising the Charge and Cooper-Pair Density Waves in Cuprates

Visualising the Charge and Cooper-Pair Density Waves in Cuprates
Author: Stephen Edkins
Publisher: Springer
Total Pages: 193
Release: 2017-08-31
Genre: Technology & Engineering
ISBN: 3319659758

Download Visualising the Charge and Cooper-Pair Density Waves in Cuprates Book in PDF, Epub and Kindle

This thesis reports on the use of scanning tunnelling microscopy to elucidate the atomic-scale electronic structure of a charge density wave, revealing that it has a d-symmetry form factor, hitherto unobserved in nature. It then details the development of an entirely new class of scanned probe: the scanning Josephson tunnelling microscope. This scans the Josephson junction formed between a cuprate superconducting microscope tip and the surface of a cuprate sample, thereby imaging the superfluid density of the sample with nanometer resolution. This novel method is used to establish the existence of a spatially modulated superconducting condensate, something postulated theoretically over half a century ago but never previously observed.

Detection of a Cooper-pair Density Wave in Bi2Sr2CaCu2O8+x

Detection of a Cooper-pair Density Wave in Bi2Sr2CaCu2O8+x
Author:
Publisher:
Total Pages: 5
Release: 2016
Genre:
ISBN:

Download Detection of a Cooper-pair Density Wave in Bi2Sr2CaCu2O8+x Book in PDF, Epub and Kindle

The quantum condensate of Cooper pairs forming a superconductor was originally conceived as being translationally invariant. In theory, however, pairs can exist with finite momentum Q, thus generating a state with a spatially modulated Cooper-pair density. Such a state has been created in ultracold 6Li gas but never observed directly in any superconductor. It is now widely hypothesized that the pseudogap phase of the copper oxide superconductors contains such a 'pair density wave' state. In this paper we report the use of nanometre-resolution scanned Josephson tunnelling microscopy to image Cooper pair tunnelling from a d-wave superconducting microscope tip to the condensate of the superconductor Bi2Sr2CaCu2O8+x. We demonstrate condensate visualization capabilities directly by using the Cooper-pair density variations surrounding zinc impurity atoms and at the Bi2Sr2CaCu2O8+x crystal supermodulation. Then, by using Fourier analysis of scanned Josephson tunnelling images, we discover the direct signature of a Cooper-pair density modulation at wavevectors QP ≈ (0.25, 0)2[pi]/a0 and (0, 0.25)2[pi]/a0 in Bi2Sr2CaCu2O8+x. The amplitude of these modulations is about five per cent of the background condensate density and their form factor exhibits primarily s or s' symmetry. Finally, this phenomenology is consistent with Ginzburg-Landau theory when a charge density wave with d-symmetry form factor and wavevector QC = QP coexists with a d-symmetry superconductor; it is also predicted by several contemporary microscopic theories for the pseudogap phase.

Exploring Strongly Interacting Gapless States

Exploring Strongly Interacting Gapless States
Author: Zhehao Dai (Ph. D.)
Publisher:
Total Pages: 161
Release: 2020
Genre:
ISBN:

Download Exploring Strongly Interacting Gapless States Book in PDF, Epub and Kindle

We study the physical property of pair density wave (PDW) and fluctuating PDW, and use it to build an effective theory of the strongly interacting pseudogap phase in cuprate high temperature superconductors. In Chapter 2, we study how Fulde-Ferrell state, the simplest form of PDW, responds to incident light. The collective motion of the condensate plays a key role; gauge invariance guides us to the correct result. From Chapter 3 to Chapter 7, we construct a pseudogap metallic state by considering quantum fluctuating PDW. We analyze a recent scanning tunneling microscope (STM) discovery of period-8 density waves in the vortex halo of the d-wave superconductor. We put it in the context of the broader pseudogap phenomenology, and compare the experimental results with various PDW-driven models and a charge density wave (CDW) driven model. We propose experiments to distinguish these different models. We present the Bogoliubov bands of PDW. We discuss fluctuating PDW from the general perspective of fluctuating superconductivity. We discuss how Bogoliubov bands evolve when the superconducting order parameter is fluctuating. We compare theoretical predictions with existing experiments on angle-resolved photoemission spectroscopy (ARPES), infrared conductivity, diamagnetism, and lattice symmetry breaking. The material presented here is based on Ref. [38, 41, 40]. Ref. [39] is not discussed in this thesis but was completed during my time at MIT.

Springer Handbook of Microscopy

Springer Handbook of Microscopy
Author: Peter W. Hawkes
Publisher: Springer Nature
Total Pages: 1561
Release: 2019-11-02
Genre: Technology & Engineering
ISBN: 3030000699

Download Springer Handbook of Microscopy Book in PDF, Epub and Kindle

This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical microscopies, coherent diffractive imaging, scanning probe microscopy, transmission electron microscopy in all its modes from aberration corrected and analytical to in-situ and time-resolved, low energy electron microscopy, photoelectron microscopy, cryo-electron microscopy in biology, and also ion microscopy. In addition to serving as an essential reference for researchers and teachers in the fields such as materials science, condensed matter physics, solid-state chemistry, structural biology and the molecular sciences generally, the Springer Handbook of Microscopy is a unified, coherent and pedagogically attractive text for advanced students who need an authoritative yet accessible guide to the science and practice of microscopy.

Nonequilibrium Dynamics of Collective Excitations in Quantum Materials

Nonequilibrium Dynamics of Collective Excitations in Quantum Materials
Author: Edoardo Baldini
Publisher: Springer
Total Pages: 360
Release: 2018-03-28
Genre: Technology & Engineering
ISBN: 3319774980

Download Nonequilibrium Dynamics of Collective Excitations in Quantum Materials Book in PDF, Epub and Kindle

This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons...) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.

Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures

Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures
Author: Alex Frano
Publisher: Springer
Total Pages: 162
Release: 2014-05-28
Genre: Technology & Engineering
ISBN: 3319070703

Download Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures Book in PDF, Epub and Kindle

This thesis presents the results of resonant and non-resonant x-ray scattering experiments demonstrating the control of collective ordering phenomena in epitaxial nickel-oxide and copper-oxide based superlattices. Three outstanding results are reported: (1) LaNiO3-LaAlO3 superlattices with fewer than three consecutive NiO2 layers exhibit a novel spiral spin density wave, whereas superlattices with thicker nickel-oxide layer stacks remain paramagnetic. The magnetic transition is thus determined by the dimensionality of the electron system. The polarization plane of the spin density wave can be tuned by epitaxial strain and spatial confinement of the conduction electrons. (2) Further experiments on the same system revealed an unusual structural phase transition controlled by the overall thickness of the superlattices. The transition between uniform and twin-domain states is confined to the nickelate layers and leaves the aluminate layers unaffected. (3) Superlattices based on the high-temperature superconductor YBa2Cu3O7 exhibit an incommensurate charge density wave order that is stabilized by heterointerfaces. These results suggest that interfaces can serve as a powerful tool to manipulate the interplay between spin order, charge order, and superconductivity in cuprates and other transition metal oxides.

Charge Density Waves in Solids

Charge Density Waves in Solids
Author: Gyula Hutiray
Publisher: Springer
Total Pages: 572
Release: 1985
Genre: Science
ISBN:

Download Charge Density Waves in Solids Book in PDF, Epub and Kindle

Nature

Nature
Author: Sir Norman Lockyer
Publisher:
Total Pages: 1866
Release: 2007
Genre: Science
ISBN:

Download Nature Book in PDF, Epub and Kindle

Room-temperature Superconductivity

Room-temperature Superconductivity
Author: Andrei Mourachkine
Publisher: Cambridge Int Science Publishing
Total Pages: 326
Release: 2004
Genre: Technology & Engineering
ISBN: 1904602274

Download Room-temperature Superconductivity Book in PDF, Epub and Kindle

Annotation The first book dealing with the subject of room-temperature conductivity.