PhD.

PhD.
Author: Daniele Bigoni
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Download PhD. Book in PDF, Epub and Kindle

Uncertainty Quantification

Uncertainty Quantification
Author: Christian Soize
Publisher: Springer
Total Pages: 344
Release: 2017-04-24
Genre: Computers
ISBN: 3319543393

Download Uncertainty Quantification Book in PDF, Epub and Kindle

This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.

Uncertainty Modeling for Engineering Applications

Uncertainty Modeling for Engineering Applications
Author: Flavio Canavero
Publisher: Springer
Total Pages: 184
Release: 2018-12-29
Genre: Technology & Engineering
ISBN: 3030048705

Download Uncertainty Modeling for Engineering Applications Book in PDF, Epub and Kindle

This book provides an overview of state-of-the-art uncertainty quantification (UQ) methodologies and applications, and covers a wide range of current research, future challenges and applications in various domains, such as aerospace and mechanical applications, structure health and seismic hazard, electromagnetic energy (its impact on systems and humans) and global environmental state change. Written by leading international experts from different fields, the book demonstrates the unifying property of UQ theme that can be profitably adopted to solve problems of different domains. The collection in one place of different methodologies for different applications has the great value of stimulating the cross-fertilization and alleviate the language barrier among areas sharing a common background of mathematical modeling for problem solution. The book is designed for researchers, professionals and graduate students interested in quantitatively assessing the effects of uncertainties in their fields of application. The contents build upon the workshop “Uncertainty Modeling for Engineering Applications” (UMEMA 2017), held in Torino, Italy in November 2017.

Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications

Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications
Author: Massimiliano Vasile
Publisher: Springer Nature
Total Pages: 448
Release: 2022-01-27
Genre: Technology & Engineering
ISBN: 3030805425

Download Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications Book in PDF, Epub and Kindle

The 2020 International Conference on Uncertainty Quantification & Optimization gathered together internationally renowned researchers in the fields of optimization and uncertainty quantification. The resulting proceedings cover all related aspects of computational uncertainty management and optimization, with particular emphasis on aerospace engineering problems. The book contributions are organized under four major themes: Applications of Uncertainty in Aerospace & Engineering Imprecise Probability, Theory and Applications Robust and Reliability-Based Design Optimisation in Aerospace Engineering Uncertainty Quantification, Identification and Calibration in Aerospace Models This proceedings volume is useful across disciplines, as it brings the expertise of theoretical and application researchers together in a unified framework.

Uncertainty Quantification

Uncertainty Quantification
Author: Ralph C. Smith
Publisher: SIAM
Total Pages: 400
Release: 2013-12-02
Genre: Computers
ISBN: 161197321X

Download Uncertainty Quantification Book in PDF, Epub and Kindle

The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems
Author: Luis Tenorio
Publisher: SIAM
Total Pages: 275
Release: 2017-07-06
Genre: Mathematics
ISBN: 1611974917

Download An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems Book in PDF, Epub and Kindle

Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.

Spectral Methods for Uncertainty Quantification

Spectral Methods for Uncertainty Quantification
Author: Olivier Le Maitre
Publisher: Springer Science & Business Media
Total Pages: 542
Release: 2010-03-11
Genre: Science
ISBN: 9048135206

Download Spectral Methods for Uncertainty Quantification Book in PDF, Epub and Kindle

This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.

Uncertainty Quantification

Uncertainty Quantification
Author: Ralph C. Smith
Publisher: SIAM
Total Pages: 400
Release: 2013-12-02
Genre: Computers
ISBN: 1611973228

Download Uncertainty Quantification Book in PDF, Epub and Kindle

The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.

Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification
Author: Roger Ghanem
Publisher: Springer
Total Pages: 0
Release: 2016-05-08
Genre: Mathematics
ISBN: 9783319123844

Download Handbook of Uncertainty Quantification Book in PDF, Epub and Kindle

The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.