Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-bounded Flows

Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-bounded Flows
Author: John Anthony Schaefer
Publisher:
Total Pages: 92
Release: 2015
Genre: Fluid dynamics
ISBN:

Download Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-bounded Flows Book in PDF, Epub and Kindle

"The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) [kappa]-[omega] Model, and the Menter Shear-Stress Transport Model. The FUN3D code developed by NASA Langley Research Center and the BCFD code developed by The Boeing Company were used as the flow solvers. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. Two studies were performed in this work. The main study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows. A case study demonstrated that the RAE 2822 sensitivity results of the main study are independent of the flow solver and of the computational grid topology and resolution"--Abstract, page iii.

Uncertainty Quantification of Turbulence Model Closure Coefficients in OpenFOAM and Fluent for Mildly Separated Flows

Uncertainty Quantification of Turbulence Model Closure Coefficients in OpenFOAM and Fluent for Mildly Separated Flows
Author: Isaac Russell Witte
Publisher:
Total Pages: 89
Release: 2017
Genre: Electronic dissertations
ISBN:

Download Uncertainty Quantification of Turbulence Model Closure Coefficients in OpenFOAM and Fluent for Mildly Separated Flows Book in PDF, Epub and Kindle

In this thesis, detailed uncertainty quantification studies focusing on the closure coefficients of eddy-viscosity turbulence models for several flows using two CFD solvers have been performed. Three eddy viscosity turbulence models considered are: the one-equation Spalart-Allmaras (SA) model, the two-equation Shear Stress Transport (SST) k-[omega] model, and the one-equation Wray-Agarwal (WA) model. OpenFOAM and ANSYS Fluent are used as flow solvers. Uncertainty quantification analyses are performed for subsonic flow over a flat plate, subsonic flow over a backward-facing step, and transonic flow past an axisymmetric bump. In the case of flat plate, coefficients of pressure, lift, drag, and skin friction are considered to be the output quantities of interest. In case of the backward-facing step, these quantities are considered along with the separation bubble size. In case of an axisymmetric transonic bump, the drag coefficient, lift coefficient, separation point and reattachment point are considered. In addition to these four quantities, global uncertainty is employed on every node in the flow for Reynolds shear stress to determine which areas of the flow the closure coefficients contribute most to the uncertainty. Uncertainty quantification is conducted using DAKOTA developed by Sandia National Laboratories using stochastic expansions based on non-intrusive polynomial chaos. All closure xii coefficients are treated as epistemic uncertain variables, each defined by a specified range. The influence of the closure coefficients on output quantities is assessed using the global sensitivity analysis based on variance decomposition. This yields Sobol indices which are used to rank the contributions of each constant. A comparison of the Sobol indices between the turbulence models, flow cases, and flow solvers is conducted. This research identifies closure coefficients for each turbulence model that contribute significantly to uncertainty in the model predictions; this information can then be used to improve the prediction capability of the models in separated flow region by a more judicious choice of the closure coefficients.

Quantification of Modelling Uncertainties in Turbulent Flow Simulations

Quantification of Modelling Uncertainties in Turbulent Flow Simulations
Author: Wouter Nico Edeling
Publisher:
Total Pages: 0
Release: 2015
Genre:
ISBN:

Download Quantification of Modelling Uncertainties in Turbulent Flow Simulations Book in PDF, Epub and Kindle

The goal of this thesis is to make predictive simulations with Reynolds-Averaged Navier-Stokes (RANS) turbulence models, i.e. simulations with a systematic treatment of model and data uncertainties and their propagation through a computational model to produce predictions of quantities of interest with quantified uncertainty. To do so, we make use of the robust Bayesian statistical framework.The first step toward our goal concerned obtaining estimates for the error in RANS simulations based on the Launder-Sharma k-e turbulence closure model, for a limited class of flows. In particular we searched for estimates grounded in uncertainties in the space of model closure coefficients, for wall-bounded flows at a variety of favourable and adverse pressure gradients. In order to estimate the spread of closure coefficients which reproduces these flows accurately, we performed 13 separate Bayesian calibrations. Each calibration was at a different pressure gradient, using measured boundary-layer velocity profiles, and a statistical model containing a multiplicative model inadequacy term in the solution space. The results are 13 joint posterior distributions over coefficients and hyper-parameters. To summarize this information we compute Highest Posterior-Density (HPD) intervals, and subsequently represent the total solution uncertainty with a probability box (p-box). This p-box represents both parameter variability across flows, and epistemic uncertainty within each calibration. A prediction of a new boundary-layer flow is made with uncertainty bars generated from this uncertainty information, and the resulting error estimate is shown to be consistent with measurement data.However, although consistent with the data, the obtained error estimates were very large. This is due to the fact that a p-box constitutes a unweighted prediction. To improve upon this, we developed another approach still based on variability in model closure coefficients across multiple flow scenarios, but also across multiple closure models. The variability is again estimated using Bayesian calibration against experimental data for each scenario, but now Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors in an unmeasured (prediction) scenario. Unlike the p-boxes, this is a weighted approach involving turbulence model probabilities which are determined from the calibration data. The methodology was applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth.The BMSA approach results in reasonable error bars, which can also be decomposed into separate contributions. However, to apply it to more complex topologies outside the class of boundary-layer flows, surrogate modelling techniques must be applied. The Simplex-Stochastic Collocation (SSC) method is a robust surrogate modelling technique used to propagate uncertain input distributions through a computer code. However, its use of the Delaunay triangulation can become prohibitively expensive for problems with dimensions higher than 5. We therefore investigated means to improve upon this bad scalability. In order to do so, we first proposed an alternative interpolation stencil technique based upon the Set-Covering problem, which resulted in a significant speed up when sampling the full-dimensional stochastic space. Secondly, we integrated the SSC method into the High-Dimensional Model-Reduction framework in order to avoid sampling high-dimensional spaces all together.Finally, with the use of our efficient surrogate modelling technique, we applied the BMSA framework to the transonic flow over an airfoil. With this we are able to make predictive simulations of computationally expensive flow problems with quantified uncertainty due to various imperfections in the turbulence models.

Proceedings of the International Conference on Aerospace System Science and Engineering 2019

Proceedings of the International Conference on Aerospace System Science and Engineering 2019
Author: Zhongliang Jing
Publisher: Springer Nature
Total Pages: 372
Release: 2020-02-29
Genre: Science
ISBN: 9811517738

Download Proceedings of the International Conference on Aerospace System Science and Engineering 2019 Book in PDF, Epub and Kindle

This book presents the proceedings of the International Conference on Aerospace System Science and Engineering (ICASSE 2019), held in Toronto, Canada, on July 30–August 1, 2019, and jointly organized by the University of Toronto Institute for Aerospace Studies (UTIAS) and the Shanghai Jiao Tong University School of Aeronautics and Astronautics. ICASSE 2019 provided a forum that brought together experts on aeronautics and astronautics to share new ideas and findings. These proceedings present high-quality contributions in the areas of aerospace system science and engineering, including topics such as trans-space vehicle system design and integration, air vehicle systems, space vehicle systems, near-space vehicle systems, aerospace robotics and unmanned systems, communication, navigation and surveillance, aerodynamics and aircraft design, dynamics and control, aerospace propulsion, avionics systems, optoelectronic systems, and air traffic management.

Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions
Author: Holger Babinsky
Publisher: Cambridge University Press
Total Pages: 481
Release: 2011-09-12
Genre: Technology & Engineering
ISBN: 1139498649

Download Shock Wave-Boundary-Layer Interactions Book in PDF, Epub and Kindle

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.

High Performance Computing

High Performance Computing
Author: Heike Jagode
Publisher: Springer Nature
Total Pages: 382
Release: 2020-10-19
Genre: Computers
ISBN: 3030598519

Download High Performance Computing Book in PDF, Epub and Kindle

This book constitutes the refereed post-conference proceedings of 10 workshops held at the 35th International ISC High Performance 2020 Conference, in Frankfurt, Germany, in June 2020: First Workshop on Compiler-assisted Correctness Checking and Performance Optimization for HPC (C3PO); First International Workshop on the Application of Machine Learning Techniques to Computational Fluid Dynamics Simulations and Analysis (CFDML); HPC I/O in the Data Center Workshop (HPC-IODC); First Workshop \Machine Learning on HPC Systems" (MLHPCS); First International Workshop on Monitoring and Data Analytics (MODA); 15th Workshop on Virtualization in High-Performance Cloud Computing (VHPC). The 25 full papers included in this volume were carefully reviewed and selected. They cover all aspects of research, development, and application of large-scale, high performance experimental and commercial systems. Topics include high-performance computing (HPC), computer architecture and hardware, programming models, system software, performance analysis and modeling, compiler analysis and optimization techniques, software sustainability, scientific applications, deep learning.

New Results in Numerical and Experimental Fluid Mechanics XII

New Results in Numerical and Experimental Fluid Mechanics XII
Author: Andreas Dillmann
Publisher: Springer Nature
Total Pages: 867
Release: 2019-09-26
Genre: Technology & Engineering
ISBN: 3030252531

Download New Results in Numerical and Experimental Fluid Mechanics XII Book in PDF, Epub and Kindle

This book gathers contributions to the 21st biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. The book’s primary emphasis is on aerodynamic research in aeronautics and astronautics, and in ground transportation and energy as well.

Turbulence Models and Their Application

Turbulence Models and Their Application
Author: Tuncer Cebeci
Publisher: Springer Science & Business Media
Total Pages: 140
Release: 2003-12-04
Genre: Science
ISBN: 9783540402886

Download Turbulence Models and Their Application Book in PDF, Epub and Kindle

After a brief review of the more popular turbulence models, the author presents and discusses accurate and efficient numerical methods for solving the boundary-layer equations with turbulence models based on algebraic formulas (mixing length, eddy viscosity) or partial-differential transport equations. A computer program employing the Cebeci-Smith model and the k-e model for obtaining the solution of two-dimensional incompressible turbulent flows without separation is discussed in detail and is presented in the accompanying CD.