Ultrafast Studies of Electron Dynamics at Metal-dielectric Interfaces

Ultrafast Studies of Electron Dynamics at Metal-dielectric Interfaces
Author:
Publisher:
Total Pages: 184
Release: 1998
Genre:
ISBN:

Download Ultrafast Studies of Electron Dynamics at Metal-dielectric Interfaces Book in PDF, Epub and Kindle

Femtosecond time- and angle-resolved two-photon photoemission spectroscopy has been used to study fundamental aspects of excited electron dynamics at metal-dielectric interfaces, including layer-by-layer evolution of electronic structure and two-dimensional electron localization. On bare Ag(111), the lifetimes of image states are dominated by their position with respect to the projected bulk band structure. The n = 2 state has a shorter lifetime than the n = 1 state due to degeneracy with the bulk conduction band. As the parallel momentum of the n = 1 image electron increases, the lifetime decreases. With decreasing temperatures, the n = 1 image electrons, with zero or nonzero parallel momentum, all become longer lived. Adsorption of one to three layers of n-heptane results in an approximately exponential increase in lifetime as a function of layer thickness. This results from the formation of a tunneling barrier through which the interfacial electrons must decay, consistent with the repulsive bulk electron affinity of n-alkanes. The lifetimes of the higher quantum states indicate that the presence of the monolayer significantly reduces coupling of the image states to the bulk band structure. These results are compared with predictions of a dielectric continuum model. The study of electron lateral motion shows that optical excitation creates interfacial electrons in quasifree states for motion parallel to the n-heptane/Ag(111) interface. These initially delocalized electrons decay into a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal by tunneling through the adlayer potential barrier. The localization time depends strongly on the electron's initial parallel momentum and exhibits a non-Arrhenius temperature dependence. The experimental findings are consistent with a 2-D self-trapping process in which electrons become localized by interacting with the topmost plane of the alkane layer. The energy dependence of the self-trapping rate has been modeled with an electron transfer theory. This analysis shows that self-trapping involves inter- and intramolecular vibrational modes of the overlayer and the non-Arrhenius temperature dependence is a result of a strong quantum contribution from the intramolecular modes. These results for a model interface contribute to the fundamental understanding of electron behavior at the interface between metals and molecular solids.

Dynamics at Solid State Surfaces and Interfaces, Volume 1

Dynamics at Solid State Surfaces and Interfaces, Volume 1
Author: Uwe Bovensiepen
Publisher: John Wiley & Sons
Total Pages: 631
Release: 2010-11-29
Genre: Science
ISBN: 352763343X

Download Dynamics at Solid State Surfaces and Interfaces, Volume 1 Book in PDF, Epub and Kindle

This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.

Ultrafast Phenomena XI

Ultrafast Phenomena XI
Author: Thomas Elsässer
Publisher: Springer Science & Business Media
Total Pages: 706
Release: 2012-12-06
Genre: Science
ISBN: 364272289X

Download Ultrafast Phenomena XI Book in PDF, Epub and Kindle

This volume contains papers presented at the Eleventh International Conference on Ultrafast Phenomena held at Garmisch-Partenkirchen, Germany, from July 12 to 17, 1998. The biannual Ultrafast Phenomena Conferences provide a forum for dis cussion of the latest advances in ultrafast optics and their applications in science and engineering. The Garmisch conference brought together a multidisciplinary group of 440 participants from 27 countries, including 127 students. The enthu siasm of this large number of Participants, the high quality of the papers they presented and the magnificent conference site resulted in a successful and pleasant conference. Progress was reported in the technology of generating ultrashort pulses, in cluding new techniques for improving laser-pulse duration, tunability over broad wavelength ranges, output power and peak intensity. Ultrafast spectroscopy con tinues to provide new insight into fundamental processes in physics, chemistry, biology, and engineering. In addition to analyzing ultrafast phenomena, control of ultrafast dynamics now represents an important topic. Ultrafast concepts and tech niques are being applied in imaging and microscopy, high speed optoelectronics, mat~rial diagnostics and processing, reflecting the maturing of the field. Acknowledgements. Many people contributed to the success of the conference.

Ultrafast Dynamics of Electrons at Interfaces

Ultrafast Dynamics of Electrons at Interfaces
Author:
Publisher:
Total Pages: 175
Release: 1999
Genre:
ISBN:

Download Ultrafast Dynamics of Electrons at Interfaces Book in PDF, Epub and Kindle

Electronic states of a thin layer of material on a surface possess unique physical and chemical properties. Some of these properties arise from the reduced dimensionality of the thin layer with respect to the bulk or the properties of the electric field where two materials of differing dielectric constants meet at an interface. Other properties are related to the nature of the surface chemical bond. Here, the properties of excess electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and the bound state energies and effective masses of the excess electrons are determined using two-photon photoemission. For Xenon, the dependence of bound state energy, effective mass, and lifetime on layer thickness from one to nine layers is examined. Not all quantities were measured at each coverage. The two photon photoemission spectra of thin layers of Xenon on a Ag(111) substrate exhibit a number of sharp, well-defined peaks. The binding energy of the excess electronic states of Xenon layers exhibited a pronounced dependence on coverage. A discrete energy shift was observed for each additional atomic layer. At low coverage, a series of states resembling a Rydberg series is observed. This series is similar to the image state series observed on clean metal surfaces. Deviations from image state energies can be described in terms of the dielectric constant of the overlayer material and its effect on the image potential. For thicker layers of Xe (beyond the first few atomic layers), the coverage dependence of the features begins to resemble that of quantum well states. Quantum well states are related to bulk band states. However, the finite thickness of the layer restricts the perpendicular wavevector to a discrete set of values. Therefore, the spectrum of quantum well states contains a series of peaks which correspond to the various allowed values of the perpendicular wavevector. Analysis of the quantum well spectrum yields electronic band structure information. In this case, the quantum well states examined are derived from the Xenon conduction band. Measurements of the energies as a function of coverage yield the dispersion along the axis perpendicular to the surface while angle-resolved two-photon photoemission measurements yield information about dispersion along the surface parallel. The relative importance of the image potential and the overlayer band structure also depends on the quantum number and energy of the state. Some members of the image series may have an energy which is in an energy gap of the layer material, therefore such states may tend to remain physically outside the layer and retain much of their image character even at higher coverages. This is the case for the n = 1 image state of the Xe/Ag(111) system. The energies of image states which are excluded from the layer have a complex dependence on the thickness of the layer and its dielectric constant. The population decay kinetics of excited electronic states of the layer were also determined. Lifetimes are reported for the first three excited states for 1-6 atomic layers of Xe on Ag(111). As the image states evolve into quantum well states with increasing coverage, the lifetimes undergo an oscillation which marks a change in the spatial extent of the state. For example, the n = 2 quantum well state decreases substantially at 3-5 layers as the electron probability density in the layer increases. The lifetime data are modeled by extending the two-band nearly-free-electron approximation to account for the insulating Xe layer.