Transport Phenomena in Fuel Cells

Transport Phenomena in Fuel Cells
Author: Bengt Sundén
Publisher: WIT Press
Total Pages: 385
Release: 2005
Genre: Technology & Engineering
ISBN: 1853128406

Download Transport Phenomena in Fuel Cells Book in PDF, Epub and Kindle

Fuel cells are expected to play a significant role in the next generation of energy systems and road vehicles for transportation. However, substantial progress is required in reducing manufacturing costs and improving performance. This book aims to contribute to the understanding of the transport processes in solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC), which are of current interest. A wide range of topics is covered, featuring contributions from prominent scientists and engineers in the field. A detailed summary of state-of-the-art knowledge and future needs, this text will be of value to graduate students and researchers working on the development of fuel cells within academia and industry.

Transport Phenomena in a Proton Exchange Membrane Fuel Cell (PEMFC)

Transport Phenomena in a Proton Exchange Membrane Fuel Cell (PEMFC)
Author: Rohit Pillai
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN: 9781267402301

Download Transport Phenomena in a Proton Exchange Membrane Fuel Cell (PEMFC) Book in PDF, Epub and Kindle

In this work, a three dimensional, multiphase, multicomponent Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed and is used to investigate the effects of water flooding. Flooding is the presence of liquid water in the cathode gas diffusion layer (GDL) and cathode catalyst layer (CL) which limits the flow of reactants to the cathode CL, thereby inhibiting the overall reaction rate and reducing the current that can be obtained from the cell. Though numerical modeling of flooding has been studied in the past, the models have either employed a simplified geometry or neglected the formation of water in the mathematical formulation. There is a need for an accurate model that can combine accuracy with full geometry to gain insight into the water management practices to be used to mitigate the effects of flooding. For this purpose a two fluid formulation with accurate empirical correlations has been employed in this work with a focus on effective diffusivity of the reactants. The model is solved using a finite volume approach using the commercial CFD software FLUENT. It is found that the model is able to predict the effect of flooding on overall performance better than existing single phase and pseudo two phase models. Water management in a PEMFC consists of both maintaining adequate membrane hydration and effecting excess water removal from the cathode. The former is dealt with a variety of humidification methods, whereas the latter is addressed by either flow field design or modification of GDL and CL properties. This model focuses on the latter and investigates the effect of properties of the GDL and CL such as porosity, permeability and wettability on overall performance. The results obtained by the model compare well with existing numerical and experimental studies.

Introduction to Transfer Phenomena in PEM Fuel Cells

Introduction to Transfer Phenomena in PEM Fuel Cells
Author: Bilal Abderezzak
Publisher: Elsevier
Total Pages: 186
Release: 2018-11-13
Genre: Technology & Engineering
ISBN: 008102763X

Download Introduction to Transfer Phenomena in PEM Fuel Cells Book in PDF, Epub and Kindle

Introduction to Transfer Phenomena in PEM Fuel Cells presents the fruit of several years of research in the area of fuel cells. The book illustrates the transfer phenomena occurring inside a single cell and describes the technology field of hydrogen, explicitly the production, storage and risk management of hydrogen as an energy carrier. Several applications of hydrogen are also cited, and special interest is dedicated to the PEM Fuel Cell. Mass, charge and heat transfer phenomena are also discussed in this great resource that includes explanations, illustrations and governing equations for each section. Illustrates transfer phenomena occurring within a single cell Describes the technological field of hydrogen (production, storage, and risk and management) Introduces the various applications of hydrogen Presents mass transfer, charge and heat phenomena

Water and Thermal Management of Proton Exchange Membrane Fuel Cells

Water and Thermal Management of Proton Exchange Membrane Fuel Cells
Author: Kui Jiao
Publisher: Elsevier
Total Pages: 402
Release: 2021-06-05
Genre: Science
ISBN: 032391117X

Download Water and Thermal Management of Proton Exchange Membrane Fuel Cells Book in PDF, Epub and Kindle

Water and Thermal Management of Proton Exchange Membrane Fuel Cells introduces the main research methods and latest advances in the water and thermal management of PEMFCs. The book introduces the transport mechanism of each component, including modeling methods at different scales, along with practical exercises. Topics include PEMFC fundamentals, working principles and transport mechanisms, characterization tests and diagnostic analysis, the simulation of multiphase transport and electrode kinetics, cell-scale modeling, stack-scale modeling, and system-scale modeling. This volume offers a practical handbook for researchers, students and engineers in the fields of proton exchange membrane fuel cells. Proton exchange membrane fuel cells (PEMFCs) are high-efficiency and low-emission electrochemical energy conversion devices. Inside the PEMFC complex, physical and chemical processes take place, such as electrochemical reaction, multiphase flow and heat transfer. This book explores these topics, and more. Introduces the transport mechanism for each component of PEMFCs Presents modeling methods at different scales, including component, cell, stack and system scales Provides exercises in PEMFC modeling, along with examples of necessary codes Covers the latest advances in PEMFCs in a convenient and structured manner Offers a solution to researchers, students and engineers working on proton exchange membrane fuel cells

Three-dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell

Three-dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
Author: Torsten Beming
Publisher:
Total Pages:
Release: 2002
Genre:
ISBN:

Download Three-dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell Book in PDF, Epub and Kindle

Fuel cells are electrochemical devices that rely on the transport of reactants (oxygen and hydrogen) and products (water and heat). These transport processes are coupled with electrochemistry and further complicated by phase change, porous media (gas diffusion electrodes) and a complex geometry. This thesis presents a three dimensional, non-isothermal computational model of a proton exchange membrane fuel cell (PEMFC). The model was developed to improve fundamental understanding of transport phenomena in PEMFCs and to investigate the impact of various operation parameters on performance. The model, which was implemented into a Computational Fluid Dynamics code, accounts for all major transport phenomena, including: water and proton transport through the membrane; electrochemical reaction; transport of electrons; transport and phase change of water in the gas diffusion electrodes; temperature variation; diffusion of multi-component gas mixtures in the electrodes; pressure gradients; multi-component convective heat and mass transport in the gas flow channels. Simulations employing the single-phase version of the model are performed for a straight channel section of a complete cell including the anode and cathode flow channels. Base case simulations are presented and analyzed with a focus on the physical insight, and fundamental understanding afforded by the availability of detailed distributions of reactant concentrations, current densities, temperature and water fluxes. The results are consistent with available experimental observations and show that significant temperature gradients exist within the cell, with temperature differences of several degrees Kelvin within the membrane-electrode-assembly. The three-dimensional nature of the transport processes is particularly pronounced under the collector plates land area, and has a major impact on the current distribution and predicted limiting current density. A parametric study with the single-phase computational model is also presented to investigate the effect of various operating, geometric and material parameters, including temperature, pressure, stoichiometric flow ratio, porosity and thickness of the gas diffusion layers, and the ratio between the channel with and the land area. The two-phase version of the computational model is used for a domain including a cooling channel adjacent to the cell. Simulations are performed over a range of current densities. The analysis reveals a complex interplay between several competing phase change mechanisms in the gas diffusion electrodes. Results show that the liquid water saturation is below 0.1 inside both anode and cathode gas diffusion layers. For the anode side, saturation increases with increasing current density, whereas at the cathode side saturation reaches a maximum at an intermediate current density (≈ 1.1Amp/cm2) and decreases thereafter. The simulation show that a variety of flow regimes for liquid water and vapour are present at different locations in the cell, and these depend further on current density. The PEMFC model presented in this thesis has a number of novel features that enhance the physical realism of the simulations and provide insight, particularly in heat and water management. The model should serve as a good foundation for future development of a computationally based design and optimization method.

PEM Fuel Cells

PEM Fuel Cells
Author: Yun Wang
Publisher: Momentum Press
Total Pages: 450
Release: 2013-04-06
Genre: Technology & Engineering
ISBN: 1606502476

Download PEM Fuel Cells Book in PDF, Epub and Kindle

Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation—passenger cars, utility vehicles, and buses—and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: • An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; • Reviews of basic principles pertaining to PEM fuel cells, including thermodynamics, electrochemical reaction kinetics, flow, heat and mass transfer; and • Descriptions and discussions of water transport and management within a PEM fuel cell, including vapor- and liquid-phase water removal from the electrodes, the effects of two-phase flow, and solid water or ice dynamics and removal, particularly the specialized case of starting a PEM fuel cell at sub-freezing temperatures (cold start) and the various processes related to ice formation.

Fuel Cells and Hydrogen Production

Fuel Cells and Hydrogen Production
Author: Timothy E. Lipman
Publisher: Springer
Total Pages: 0
Release: 2018-10-05
Genre: Technology & Engineering
ISBN: 9781493977888

Download Fuel Cells and Hydrogen Production Book in PDF, Epub and Kindle

The expected end of the “oil age” will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today’s fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. This handbook offers concise yet comprehensive coverage of the current state of fuel cell research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types and hydrogen production technologies, and discuss materials and components for these systems. Sustainability and marketing considerations are also covered, including comparisons of fuel cells with alternative technologies.

Fuel Cell Engines

Fuel Cell Engines
Author: Matthew M. Mench
Publisher: John Wiley & Sons
Total Pages: 530
Release: 2008-03-07
Genre: Technology & Engineering
ISBN: 0471689580

Download Fuel Cell Engines Book in PDF, Epub and Kindle

Fuel Cell Engines is an introduction to the fundamental principles of electrochemistry, thermodynamics, kinetics, material science and transport applied specifically to fuel cells. It covers scientific fundamentals and provides a basic understanding that enables proper technical decision-making.

Hydrogen-Based Energy Conversion

Hydrogen-Based Energy Conversion
Author: Jin-Soo Park
Publisher: MDPI
Total Pages: 128
Release: 2021-04-28
Genre: Science
ISBN: 303650690X

Download Hydrogen-Based Energy Conversion Book in PDF, Epub and Kindle

This book consists of the nine sections: i) the first three sections are related to polymeric electrolyte composites; ii) the next two sections relate to gas diffusion layers (GDLs); iii) the next two sections relate to membrane¬–electrode assembly (MEA); iv) and the final two sections deal with the numerical simulation of flow fields for polymer electrolyte fuel cells (PEFCs). All sections describe recent results of the study of the main components of PEFC stacks. The studies provide the underlying material, electrochemical, and/or mechanical aspects that enhance the mass transport of gas, ions (liquid), and electrons for a better performance of PEFCs and the electrochemical reactions at the triple-phase boundary in electrodes. Each study offers the fundamentals, a comprehensive background, and cutting-edge technology on the aforementioned materials and mass transport phenomena.