Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions

Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions
Author: L.C. Gupta
Publisher: Springer Science & Business Media
Total Pages: 749
Release: 2012-12-06
Genre: Science
ISBN: 1461309476

Download Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions Book in PDF, Epub and Kindle

During the Koln meeting (August 28-31, 1984), Irdia was chosen as the venue for the next International Conference on Valence Fluctuations. lhis was in recognition ard appreciation of the work done, both experimental ard theoretical, by the Irdian scientists in this area during the last decade. We decided to hold this Conference in the month of January, 1987 at Bangalore. lhe subject of Valence Fluctuations has kept itself alive ard active as it has provided many shocks ard suprises particularly among the Ce- ard U-based intermetallies. lhe richness of many interesting physical phenomena occurring in mixed valent materials, the flexibility of modifying their physical properties (by alloying, for example) ard the possibility of synthesizing a wide variety of new such materials seem to be the key factors in this regard. Barely six months before this Conference, an International Conference on Anomalous Rare Earths and Actinides (ICAREA) had been held at Grenoble (July, 1986) which also focussed on mixed valence ard heavy fermion phenomena. In spite of this, the response to this' Conference was very enthusiastic and encouraging. Many interesting ard important results were presented at this Conference which have been included in this volume.

Quantum Critical Phenomena of Valence Transition

Quantum Critical Phenomena of Valence Transition
Author: Shinji Watanabe
Publisher: Springer Nature
Total Pages: 220
Release: 2024-01-27
Genre: Science
ISBN: 9819935180

Download Quantum Critical Phenomena of Valence Transition Book in PDF, Epub and Kindle

This book comprehensively presents an unconventional quantum criticality caused by valence fluctuations, which offers theoretical understanding of unconventional Fermi-liquid properties in cerium- and ytterbium-based heavy fermion metals including CeCu2(Si,Ge)2 and CeRhIn5 under pressure, and quasicrystal β-YbAlB4 and Yb15Al34Au51. The book begins with an introduction to fundamental concepts for heavy fermion systems, valence fluctuation, and quantum phase transition, including self-consistent renormalization group theory. A subsequent chapter is devoted to a comprehensive description of the theory of the unconventional quantum criticality based on a valence transition, featuring explicit temperature dependence of various physical quantities, which allows for comparisons to relevant experiments. Lastly, it discusses how ubiquitous the valence fluctuation is, presenting candidate materials not only in heavy fermions, but also in strongly correlated electrons represented by high-Tc superconductor cuprates. Introductory chapters provide useful materials for learning fundamentals of heavy fermion systems and their theory. Further, experimental topics relevant to valence fluctuations are valuable resources for those who are new to the field to easily catch up with experimental background and facts.

Heavy-Fermion Systems

Heavy-Fermion Systems
Author: Prasanta Misra
Publisher: Elsevier
Total Pages: 352
Release: 2007-12-11
Genre: Technology & Engineering
ISBN: 9780080554679

Download Heavy-Fermion Systems Book in PDF, Epub and Kindle

The book on Heavy-Fermion Systems is a part of the Book series "Handbook of Metal Physics", each volume of which is written to facilitate the research of Ph.D. students, faculty and other researchers in a specific area. The Heavy-Fermions (sometimes known as Heavy-Electrons) is a loosely defined collection of intermetallic compounds containing rare-earth (mostly Ce) or actinide (mostly U) elements. These unusual names were given due to the large effective mass (100-1,000 times greater than the mass of a free electron) below a critical temperature. They have a variety of ground states including superconducting, antiferromagnetic, paramagnetic or semiconducting. Some display unusual magnetic properties such as magnetic quantum critical point and metamagnetism. This book is essentially a summary as well as a critical review of the theoretical and experimental work done on Heavy Fermions. · Extensive research references. · Comprehensive review of a very rapidly growing number of theories. · Summary of all important experiments. · Comparison with other highly correlated systems such as High-Tc Superconductors. · Possible Technological applications.

Theory of Heavy Fermions and Valence Fluctuations

Theory of Heavy Fermions and Valence Fluctuations
Author: Tadao Kasuya
Publisher: Springer Science & Business Media
Total Pages: 297
Release: 2012-12-06
Genre: Science
ISBN: 3642826180

Download Theory of Heavy Fermions and Valence Fluctuations Book in PDF, Epub and Kindle

This volume contains the proceedings of the Eighth Taniguchi Interna tional Symposium on the Theory of Condensed Matter, which was held at Shima Kanko Hotel in Shima, Japan, 10-13 April 1985. The topic of the Symposium was Valence Fluctuation and Heavy Fermion Systems, one of the most fundamental problems in present-day condensed matter physics. The dilute Kondo problem, which is one of the most typical and unique many-body problems in condensed matter physics, developed recently into the dense Kondo and the coherent Kondo lattice problems in the 4f elec tron systems. It is accepted now that a large degeneracy in f-electron systems makes this latter situation possible by enhancing the single-site Kondo state relative to the inter-site magnetic interactions. Now, anoma lous behavior in f-electron systems show rich variety and are called valence fluctuation phenomena as a whole. They have, however, a common fea ture. In the lowest temperature region, they show either heavy Fermion like character or a narrow gap formation at the Fermi energy. Discovery of superconductivity in the heavy Fermion systems is attracting more in terest. Anyway, the valence fluctuating states are thought to be of fun damental importance to bridge the gap between the localized magnetic states and the delocalized nownagnetic states.

Physics Of Heavy Fermions: Heavy Fermions And Strongly Correlated Electrons Systems

Physics Of Heavy Fermions: Heavy Fermions And Strongly Correlated Electrons Systems
Author: Yoshichika Onuki
Publisher: World Scientific
Total Pages: 336
Release: 2018-04-26
Genre: Science
ISBN: 9813232218

Download Physics Of Heavy Fermions: Heavy Fermions And Strongly Correlated Electrons Systems Book in PDF, Epub and Kindle

A large variety of materials prove to be fascinating in solid state and condensed matter physics. New materials create new physics, which is spearheaded by the international experimental expert, Prof Yoshichika Onuki. Among them, the f electrons of rare earth and actinide compounds typically exhibit a variety of characteristic properties, including spin and charge orderings, spin and valence fluctuations, heavy fermions, and anisotropic superconductivity. These are mainly manifestations of better competitive phenomena between the RKKY interaction and the Kondo effect. The present text is written so as to understand these phenomena and the research they prompt. For example, superconductivity was once regarded as one of the more well-understood many-body problems. However, it is, in fact, still an exciting phenomenon in new materials. Additionally, magnetism and superconductivity interplay strongly in heavy fermion superconductors. The understanding of anisotropic superconductivity and magnetism is a challenging problem in solid state and condensed matter physics. This book will tackle all these topics and more.

Magnetism in Heavy Fermion Systems

Magnetism in Heavy Fermion Systems
Author: Harry Brian Radousky
Publisher: World Scientific
Total Pages: 395
Release: 2000
Genre: Science
ISBN: 9810243480

Download Magnetism in Heavy Fermion Systems Book in PDF, Epub and Kindle

Annotation The six articles are heavily weighted toward an experimental perspective, but one details a particular set of theoretical models for f-electron systems, and the introduction overviews the role of magnetism in heavy fermion materials as well as summarizing the content of each subsequent article. They in turn cover superconductors, muon spin relaxation studies of small-moment heavy fermion systems, neutron scattering, and magnetism in the praseodymium-containing cuprates. Annotation copyrighted by Book News Inc., Portland, OR.

Dynamics of Heavy Electrons

Dynamics of Heavy Electrons
Author: Yoshio Kuramoto
Publisher: OUP Oxford
Total Pages: 252
Release: 2000-01-27
Genre: Science
ISBN: 0191545465

Download Dynamics of Heavy Electrons Book in PDF, Epub and Kindle

Heavy electrons are found among a number of lanthanide and actinide compounds, and are characterized by a large effective mass which becomes comparable to the mass of a muon. Heavy electrons exhibit rich phenomena such as unconventional superconductivity, weak anti- ferromagnetism, or pseudo meta-magnetism. This book is intended not only as a monograph, but can readily serve as an advanced textbook on theoretical and experimental physics of strongly correlated electrons. Over the last two decades, heavy electrons have been the focus of very active experimental and theoretical studies. Many established ideas and techniques have been insufficient to describe and understand heavy electrons and their impact properly. On the theoretical side, quantum fluctuations make mean-field theories difficult to handle, while on the experimental side, extreme conditions such as strong magnetic fields and pressure at ultra-low temperatures may be required. Heavy electron systems as described in this book offer a case study for applying and testing most of the major tools in theoretical and experimental condensed matter physics. Graduate students and researchers working on strongly correlated condensed matter systems will find in this book a comprehensive introduction and many examples how conventional concepts of solids may work or not work, and how they can be refined and sharpened in the context of heavy electron systems.