Synthesis and Reactivity of Carbene Complexes of Iron, Ruthenium and Osmium Porphyrins

Synthesis and Reactivity of Carbene Complexes of Iron, Ruthenium and Osmium Porphyrins
Author: Yan Li
Publisher: Open Dissertation Press
Total Pages:
Release: 2017-01-27
Genre:
ISBN: 9781361426210

Download Synthesis and Reactivity of Carbene Complexes of Iron, Ruthenium and Osmium Porphyrins Book in PDF, Epub and Kindle

This dissertation, "Synthesis and Reactivity of Carbene Complexes of Iron, Ruthenium and Osmium Porphyrins" by Yan, Li, 李艷, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. DOI: 10.5353/th_b3124573 Subjects: Carbenes (Methylene compounds) - Synthesis Ruthenium compounds Iron compounds Complex compounds Porphyrins Osmium compounds

Ruthenium in Organic Synthesis

Ruthenium in Organic Synthesis
Author: Shun-Ichi Murahashi
Publisher: John Wiley & Sons
Total Pages: 398
Release: 2006-03-06
Genre: Science
ISBN: 3527605797

Download Ruthenium in Organic Synthesis Book in PDF, Epub and Kindle

In this comprehensive book, one of the leading experts, Shun-Ichi Murahashi, presents all the important facets of modern synthetic chemistry using Ruthenium, ranging from hydrogenation to metathesis. In 14 contributions, written by an international authorship, readers will find all the information they need about this fascinating and extraordinary chemistry. The result is a high quality information source and a indispensable reading for everyone working in organometallic chemistry. From the contents: Introduction (S.-I. Murahashi) Hydrogenation and Transfer Hydrogenation (M. Kitamura and R. Noyori) Oxidations (S.-I. Murahashi and N. Komiya) Carbon-Carbon Bond Formations via Ruthenacycle Intermediates (K. Itoh) Carbon-Carbon Bond Formation via pi-Allylruthenium Intermediates (T. Mitsudo) Olefin Metathesis (R. H. Grubbs) Cyclopropanation (H. Nishiyama) Nucleophilic Addition to Alkynes and Reactions via Vinylidene Intermediates (P. Dixneuf) Reactions via C-H Activation (N. Chatani) Lewis Acid Reactions (E. P. Kundig) Reactions with CO and CO2 (T. Mitsudo) Isomerization of Organic Substrates Catalyzed by Ruthenium Complexes (H. Suzuki) Radical Reactions (H. Nagashima) Bond Cleavage Reactions (S. Komiya)

Synthesis and Reactivity of Compounds Containing Ruthenium-carbon, -nitrogen, and -oxygen Bonds

Synthesis and Reactivity of Compounds Containing Ruthenium-carbon, -nitrogen, and -oxygen Bonds
Author:
Publisher:
Total Pages: 417
Release: 1990
Genre:
ISBN:

Download Synthesis and Reactivity of Compounds Containing Ruthenium-carbon, -nitrogen, and -oxygen Bonds Book in PDF, Epub and Kindle

The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe3)4Ru(X)(Y) and (DMPM)2Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe3)4Ru(Ph)(Me) or (PMe3)4Ru(Ph)2 leads to the ruthenium benzyne complex (PMe3)4Ru([eta]2-C6H4) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO2 and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe3)4Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

Ruthenium Chemistry

Ruthenium Chemistry
Author: Ajay Kumar Mishra
Publisher: CRC Press
Total Pages: 386
Release: 2018-01-17
Genre: Science
ISBN: 1351616501

Download Ruthenium Chemistry Book in PDF, Epub and Kindle

This book will describe Ruthenium complexes as chemotherapeutic agent specifically at tumor site. It has been the most challenging task in the area of cancer therapy. Nanoparticles are now emerging as the most effective alternative to traditional chemotherapeutic approach. Nanoparticles have been shown to be useful in this respect. However, in view of organ system complicacies, instead of using nanoparticles as a delivery tool, it will be more appropriate to synthesize a drug of nanoparticle size that can use blood transport mechanism to reach the tumor site and regress cancer. Due to less toxicity and effective bio-distribution, ruthenium (Ru) complexes are of much current interest. Additionally, lumiscent Ru-complexes can be synthesized in nanoparticle size and can be directly traced at tissue level. The book will contain the synthesis, characterization, and applications of various Ruthenium complexes as chemotherapeutic agents. The book will also cover the introduction to chemotherapy, classification of Ru- complexes with respect to their oxidation states and geometry, Ruthenium complexes of nano size: shape and binding- selectivity, binding of ruthenium complexes with DNA, DNA cleavage studies and cytotoxicity. The present book will be more beneficial to researchers, scientists and biomedical. Current book will empower specially to younger generation to create a new world of ruthenium chemistry in material science as well as in medicines. This book will be also beneficial to national/international research laboratories, and academia with interest in the area of coordination chemistry more especially to the Ruthenium compounds and its applications.