Synthesis and Coordination Chemistry of Multidentate Ligands Based on Nitrogen-containing Heterocyclic Phenanthridine Moieties

Synthesis and Coordination Chemistry of Multidentate Ligands Based on Nitrogen-containing Heterocyclic Phenanthridine Moieties
Author: Rajarshi Mondal
Publisher:
Total Pages: 0
Release: 2020
Genre:
ISBN:

Download Synthesis and Coordination Chemistry of Multidentate Ligands Based on Nitrogen-containing Heterocyclic Phenanthridine Moieties Book in PDF, Epub and Kindle

This project explored the synthesis of bi-functional neutral donor ligands using pi-extended phenanthridine system which can stabilize the late transition metals. My interest would be the phenanthridine ring of 14 pi-electron polycyclic heteroaromatic system, which is the building block of my ligands and the properties of this extended aromatic system while binding with late transition metals and comparing with smaller congener quinoline precursor for understanding the effect of site dependent pi extension. The application and properties of designed metal complexes have been extensively studied. The study of using pi-extended phenanthridine as a ligand and its metal complexes would open a new window of opportunities. A synthetic route to bromo functionalization of benzo-fused N-heterocyclic phenanthridine, enabling the constructions of both phosphinophenanthridine and NHC carbene-phenanthridine have been devised, which are heterobifunctional Lewis base containing both phosphine/carbene and phenanthridine donors. The coordination chemistry for both phosphine/carbene ligands with ions of late first-row transition metals has been explored. 4-Bromophenanthridine was synthesized by Suzuki cross-coupling/condensation, 6-substitution was conducted by reaction between phenanthridinone and phosphine(V) oxyhalide. The installation of phosphine was directed by lithium-halogen exchange of 4-bromophenanthridine. The carbenes were placed by the reaction between 6-halophenanthridine and corresponding imidazole in high temperature. A series of halide bridge Cu complexes were synthesized using phosphino-phenanthridine ligand to check the effect of site selective pi-extension on emission property by comparing with smaller congener quinoline based Cu complexes. Further study leads to design of sterically encumbered phenanthridine for diminishing the excited state geometric orientation. A relative effect of counterion in solid-state emission lifetime has also been studied. A group of octahedral d8 metal complexes were synthesized by using both phosphine/carbene ligands to study the metal to ligand charge transfer and its lifetime. The potential of these complexes for use in the field of photosensitizer was also discussed. Phosphino ligand based Fe complexes have been synthesized and their use in the filed of hydrogenation catalysis has also been discussed.

Coordination Chemistry of Multidentate Ligands from a Multi-component Reaction

Coordination Chemistry of Multidentate Ligands from a Multi-component Reaction
Author: Ann Almesaker
Publisher:
Total Pages: 250
Release: 2009
Genre:
ISBN:

Download Coordination Chemistry of Multidentate Ligands from a Multi-component Reaction Book in PDF, Epub and Kindle

The application of a multi-component reaction approach has been explored in the synthesis of intricate ligands incorporating the commonly employed ligand motifs bis(2-pyridylmethyl)amine (bPMA) and tris(2-aminoethyl)amine (tren). The synthesis of these ligands demonstrates that multi-component reactions can be an area with high exploratory power in ligand syntheses as they have the potential to afford ligands with a diverse variety of structures by a simple methodology.The coordination chemistry of one bPMA based ligand has been examined with a range of transition metal ions (i.e. MnII, CoII and CuII). The structures of several of these products have been determined by X-ray crystallography and their properties examined by various spectroscopic methods. The complexes are discussed in terms of similarities and differences in the solid state between the different metal ions in combination with different counter ions. Mononuclear and dinuclear complexes, and one case of a 1D coordination polymer were isolated.The spectroscopic properties of copper(II) complexes formed by two analogous tren based ligands were studied. From these studies, it could be concluded that the two ligands formed analogous complexes in both solution and in the solid state. Data on three of the copper(II) tren complexes were collected using synchrotron radiation due to the small size of the isolated crystals. These complexes were found to have trigonal bipyramidal coordination geometry around the mononuclear copper(II) centre. Two isomeric copper(II) nitrate complexes with minor differences in the copper(II) geometries were isolated. In addition, a copper(II) fluoride complex [CuLF]BF4·THF (L = tren based ligand) was studied which interestingly exhibited a very short Cu-F bond, in fact theshortest reported to present time.The copper(II) complexes were further investigated in catalytic oxidation reactions and small ion stabilisation studies. The complexes had poor catalytic activity in catechol oxidation and in oxidative coupling of 2,6-di-tert-butylphenol. However, the bPMA based copper(II) complex showed an initially relatively high catalytic activity in the oxidative coupling reaction, but underwent deactivation. The complexes were not worthy of further investigation in these reactions due to the low catalytic activity. Preliminary results pointed to the fact that the tren based ligands were able to stabilise Cu-OOH species in the solution at low temperatures (-60 and -80 °C). Such complexes are of interest in the elucidation of enzymatic mechanisms of monooxygenases such as peptidylglycine [alpha]-hydroxylating monooxygenases and dopamine [beta]-monooxygenases. These Cu-OOH complexes also demonstrated evidence of partial ligand oxidation upon warming the solutions containing the complexes.Overall a range of ligands structures with intricate structures have been synthesised by a multi-component approach and used to prepare transition metal complexes (CuII, CoII and MnII) which display interesting properties due to the unusual ligand frameworks with large pendant substituents.

Molecular Magnetism

Molecular Magnetism
Author: Olivier Kahn
Publisher: Courier Dover Publications
Total Pages: 419
Release: 2021-11-17
Genre: Science
ISBN: 0486837424

Download Molecular Magnetism Book in PDF, Epub and Kindle

Highly regarded and historic book covers basic concepts of magnetization and magnetic susceptibility, establishes the fundamental equations of molecular magnetism, and examines molecules containing a unique magnetic center. 2019 edition.

Synthesis of Polydentate Ligands and TheFormation of Heterometallic and CircularHelicates

Synthesis of Polydentate Ligands and TheFormation of Heterometallic and CircularHelicates
Author: Martina Whitehead
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Synthesis of Polydentate Ligands and TheFormation of Heterometallic and CircularHelicates Book in PDF, Epub and Kindle

Described herein, is the synthesis and coordination chemistry of seven novel ligands L1 - L7. These ligands form metallosupramolecular assemblies upon coordination of transition metal ions resulting in heterodi- and hetreotrimetallic double helicates and penta- and tetranuclear cyclic helicates. Described in Chapter 2 is a new class of ditopic segmental pyridyl-thiazole(py-tz) N-donor ligands L1 - L3. Reaction of L1 with ZnII ions results in the formation of a dinuclear double helicate [Zn2(L1)2]4+. Reaction of L2 with either ZnII or HgII results in the formation of the L2-containing dinuclear double helicates [Zn2(L2)2]4+ and [Hg2(L2)2]4+. However, reaction with both ZnII or HgII results in the sole formation of the heterodimetallic helicate [HgZn(L2)2]+. Both metal ions are 6-coordinate but the HgII ion is coordinated by the two py-tz-py units whereas the ZnII ion is coordinated by the py-py-tz domain. The reason that these isomeric sites have different preferences for each of the metal ions is due to the position of the thiazole unit within the terdentate domains, as in the central position the thiazole unit increases the?bite angle? of the donor unit making it more suitable for the larger HgII. Conversely the py-py-tz domain has a smaller bite angle and it more suited to the smaller ZnII ion. Reaction of L3 with ZnII, HgII and CuII results in the formation of a heterometallic trinuclear double helicate [HH-[HgCuZn(L3)2]5+. In a similar fashion to L2, the ZnII ion coordinated by the terdentate py-py-tz domain and the HgII coordinated by the py-tz-py domain. The central bipyridine unit coordinates the tetrahedral CuII ion resulting in the first reported example of a heterotrimetallic double helicate. Described in Chapter 4 is a potentially hexadentate N-donor ligand L4, which upon reaction with CdII results in the formation of a dinuclear double helicate [Cd2(L4)2]4+. In this structure the ligand partitions into two tridentate tz-py-py domains each of which coordinate a different metal ion. However, reaction of L4 with ZnII results in the formation of a pentanuclear circular helicate [Zn5(L4)5]10+, with all the five zinc ions adopting a octahedral coordination geometry arising from the coordination of the two tridentate tz-py-py domains from two different ligand strands. This difference in structure is attributed to unfavourable steric interactions which prevent the formation of [Zn2(L4)2]4+ but these unfavourable interactions are not present with the larger Cd2+ ion. Described in Chapter 5 are the potentially pentadentate and tetradentate ligands L5 and L6, respectively. The ligand L5 contains both a bidentate and tridentate binding site separated by a phenylene spacer unit. Reaction of L5 with CuII results in the formation of a pentanuclear circular helicate [Cu5(L5)5]10+. Each of the CuII ions adopts a 5-coordinate geometry formed by coordination of the bidentate domain of one ligand strand and the tridentate domain of a different ligand. As a result this gives a head-to-tail pentanuclear double helicate. Reaction of L6 and L4 (Chapter 4) with CuII results in the formation of a heteroleptic pentanuclear circular helicate [Cu5(L4)3(L6)2]10+. The cyclic array consists of five copper(II) ions, coordinated by three strands of L4 and two strands of L6. In this species four of the CuII adopt a 5- coordinate geometry arising from coordination of a tridentate domain from L4 and a bidentate domain from L6. The remaining copper ion is coordinated by two tridentate domains from L4 resulting in an octahedral coordination geometry. Described in Chapter 6 is the potentially hexadentate N-donor ligand L7 which comprises of two identical tridentate py-py-tz N3 binding domains separated by a pyrene unit. Reaction of L7 with ZnII results in the formation of a tetranuclear circular helicate [Zn4(L7)4]8+ with all four zinc metal ions adopting a six-coordinate geometry arising from the coordination of two tridentate pypy- tz units from two different ligand strands. The formation of this lower nuclearity species (e.g. tetranuclear rather than pentanuclear) is attributed to the p-stacking between the pyrene unit and the py-py-tz domain.

Comprehensive Coordination Chemistry II

Comprehensive Coordination Chemistry II
Author: J. A. McCleverty
Publisher: Newnes
Total Pages: 11845
Release: 2003-12-03
Genre: Science
ISBN: 0080913164

Download Comprehensive Coordination Chemistry II Book in PDF, Epub and Kindle

Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly comissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest.

Synthesis of Polyfunctional Ligands for the Coordination Chemistry and Catalysis

Synthesis of Polyfunctional Ligands for the Coordination Chemistry and Catalysis
Author: Christophe Fliedel
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Synthesis of Polyfunctional Ligands for the Coordination Chemistry and Catalysis Book in PDF, Epub and Kindle

The objective of this thesis was the developement of new polyfunctional ligands families to study, in a first time, their coordination chemistry towards metallic centers, and in a second time, in view of the nature of the species formed their physical and/or catalytic properties. The combination of donor sites which seems the most interesting was based on the association of donors known to form strong interactions with the metals envisaged, like phosphines (P- ) or N-heterocyclic carbenes (CNHC- ), with more labile donors, like a thioether function (S- ). This association allows the formation of systems called "hemilabiles", which showed good candidates for homogenous catalytic applications. Ligands of type: diaminophosphine/thioether: P-, P-, S- have been developed. These ligands showed various coordination modes, from which a large variety of organometallic complexes were obtained. The second target ligands were of type: N-heterocyclique carbenes (NHC), bearing a thioether group on one nitrogen atom from the cycle: S, CNHC or on both nitrogen: S, CNHC, S. Their precursors have been prepared in "ecofriend" conditions and allowing a large variability. The ligands offer also various coordination modes illustrated by their silver(I) and palladium(II) complexes. The catalytic potential of these compounds has been evaluated in the Suzuki- Miyaura cross-coupling reaction and revealed a very good activity towards brominated substrates.

Carbon Nanotubes and Related Structures

Carbon Nanotubes and Related Structures
Author: Dirk M. Guldi
Publisher: John Wiley & Sons
Total Pages: 562
Release: 2010-01-26
Genre: Technology & Engineering
ISBN: 9783527629947

Download Carbon Nanotubes and Related Structures Book in PDF, Epub and Kindle

Written by the most prominent experts and pioneers in the field, this ready reference combines fundamental research, recent breakthroughs and real-life applications in one well-organized treatise. As such, both newcomers and established researchers will find here a wide range of current methods for producing and characterizing carbon nanotubes using imaging as well as spectroscopic techniques. One major part of this thorough overview is devoted to the controlled chemical functionalization of carbon nanotubes, covering intriguing applications in photovoltaics, organic electronics and materials design. The latest research on novel carbon-derived structures, such as graphene, nanoonions and carbon pea pods, round off the book.