The Statistical Mechanics of Quantum Lattice Systems

The Statistical Mechanics of Quantum Lattice Systems
Author:
Publisher: European Mathematical Society
Total Pages: 402
Release: 2009
Genre: Science
ISBN: 9783037190708

Download The Statistical Mechanics of Quantum Lattice Systems Book in PDF, Epub and Kindle

Quantum statistical mechanics plays a major role in many fields such as thermodynamics, plasma physics, solid-state physics, and the study of stellar structure. While the theory of quantum harmonic oscillators is relatively simple, the case of anharmonic oscillators, a mathematical model of a localized quantum particle, is more complex and challenging. Moreover, infinite systems of interacting quantum anharmonic oscillators possess interesting ordering properties with respect to quantum stabilization. This book presents a rigorous approach to the statistical mechanics of such systems, in particular with respect to their actions on a crystal lattice. The text is addressed to both mathematicians and physicists, especially those who are concerned with the rigorous mathematical background of their results and the kind of problems that arise in quantum statistical mechanics. The reader will find here a concise collection of facts, concepts, and tools relevant for the application of path integrals and other methods based on measure and integration theory to problems of quantum physics, in particular the latest results in the mathematical theory of quantum anharmonic crystals. The methods developed in the book are also applicable to other problems involving infinitely many variables, for example, in biology and economics.

Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems
Author: Sacha Friedli
Publisher: Cambridge University Press
Total Pages: 643
Release: 2017-11-23
Genre: Mathematics
ISBN: 1107184827

Download Statistical Mechanics of Lattice Systems Book in PDF, Epub and Kindle

A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.

Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems
Author: David Lavis
Publisher: Springer Science & Business Media
Total Pages: 376
Release: 2013-04-17
Genre: Science
ISBN: 3662038439

Download Statistical Mechanics of Lattice Systems Book in PDF, Epub and Kindle

This two-volume work provides a comprehensive study of the statistical mechanics of lattice models. It introduces readers to the main topics and the theory of phase transitions, building on a firm mathematical and physical basis. Volume 1 contains an account of mean-field and cluster variation methods successfully used in many applications in solid-state physics and theoretical chemistry, as well as an account of exact results for the Ising and six-vertex models and those derivable by transformation methods.

Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems
Author: David Lavis
Publisher: Springer Science & Business Media
Total Pages: 437
Release: 2013-06-29
Genre: Science
ISBN: 3662100207

Download Statistical Mechanics of Lattice Systems Book in PDF, Epub and Kindle

Most of the interesting and difficult problems in statistical mechanics arise when the constituent particles of the system interact with each other with pair or multipartiele energies. The types of behaviour which occur in systems because of these interactions are referred to as cooperative phenomena giving rise in many cases to phase transitions. This book and its companion volume (Lavis and Bell 1999, referred to in the text simply as Volume 1) are princi pally concerned with phase transitions in lattice systems. Due mainly to the insights gained from scaling theory and renormalization group methods, this subject has developed very rapidly over the last thirty years. ' In our choice of topics we have tried to present a good range of fundamental theory and of applications, some of which reflect our own interests. A broad division of material can be made between exact results and ap proximation methods. We have found it appropriate to inelude some of our discussion of exact results in this volume and some in Volume 1. Apart from this much of the discussion in Volume 1 is concerned with mean-field theory. Although this is known not to give reliable results elose to a critical region, it often provides a good qualitative picture for phase diagrams as a whole. For complicated systems some kind of mean-field method is often the only tractable method available. In this volume our main concern is with scaling theory, algebraic methods and the renormalization group.

Equilibrium Statistical Mechanics of Lattice Models

Equilibrium Statistical Mechanics of Lattice Models
Author: David A. Lavis
Publisher: Springer
Total Pages: 801
Release: 2015-01-31
Genre: Science
ISBN: 9401794308

Download Equilibrium Statistical Mechanics of Lattice Models Book in PDF, Epub and Kindle

Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations. In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef—Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad\'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.

Convexity in the Theory of Lattice Gases

Convexity in the Theory of Lattice Gases
Author: Robert B. Israel
Publisher: Princeton University Press
Total Pages: 257
Release: 2015-03-08
Genre: Science
ISBN: 1400868424

Download Convexity in the Theory of Lattice Gases Book in PDF, Epub and Kindle

In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses a version of a theorem by Bishop and Phelps to obtain existence results for phase transitions. Furthermore, he shows how the Gibbs Phase Rule and the existence of a wide variety of phase transitions follow from the general framework and the theory of convex functions. While the behavior of some of these phase transitions is very "pathological," others exhibit more "reasonable" behavior. As an example, the author considers the isotropic Heisenberg model. Formulating a version of the Gibbs Phase Rule using Hausdorff dimension, he shows that the finite dimensional subspaces satisfying this phase rule are generic. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.