The Numerical Solution of Ordinary and Partial Differential Equations

The Numerical Solution of Ordinary and Partial Differential Equations
Author: Granville Sewell
Publisher: World Scientific
Total Pages: 348
Release: 2014-12-16
Genre: Mathematics
ISBN: 9814635111

Download The Numerical Solution of Ordinary and Partial Differential Equations Book in PDF, Epub and Kindle

This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A. The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions. Contents:Direct Solution of Linear SystemsInitial Value Ordinary Differential EquationsThe Initial Value Diffusion ProblemThe Initial Value Transport and Wave ProblemsBoundary Value ProblemsThe Finite Element MethodsAppendix A — Solving PDEs with PDE2DAppendix B — The Fourier Stability MethodAppendix C — MATLAB ProgramsAppendix D — Answers to Selected Exercises Readership: Undergraduate, graduate students and researchers. Key Features:The discussion of stability, absolute stability and stiffness in Chapter 1 is clearer than in other textsStudents will actually learn to write programs solving a range of simple PDEs using the finite element method in chapter 5In Appendix A, students will be able to solve quite difficult PDEs, using the author's software package, PDE2D. (a free version is available which solves small to moderate sized problems)Keywords:Differential Equations;Partial Differential Equations;Finite Element Method;Finite Difference Method;Computational Science;Numerical AnalysisReviews: "This book is very well written and it is relatively easy to read. The presentation is clear and straightforward but quite rigorous. This book is suitable for a course on the numerical solution of ODEs and PDEs problems, designed for senior level undergraduate or beginning level graduate students. The numerical techniques for solving problems presented in the book may also be useful for experienced researchers and practitioners both from universities or industry." Andrzej Icha Pomeranian Academy in Słupsk Poland

Numerical Solution of Ordinary and Partial Differential Equations

Numerical Solution of Ordinary and Partial Differential Equations
Author: L. Fox
Publisher: Elsevier
Total Pages: 521
Release: 2014-05-15
Genre: Mathematics
ISBN: 1483149471

Download Numerical Solution of Ordinary and Partial Differential Equations Book in PDF, Epub and Kindle

Numerical Solution of Ordinary and Partial Differential Equations is based on a summer school held in Oxford in August-September 1961. The book is organized into four parts. The first three cover the numerical solution of ordinary differential equations, integral equations, and partial differential equations of quasi-linear form. Most of the techniques are evaluated from the standpoints of accuracy, convergence, and stability (in the various senses of these terms) as well as ease of coding and convenience of machine computation. The last part, on practical problems, uses and develops the techniques for the treatment of problems of the greatest difficulty and complexity, which tax not only the best machines but also the best brains. This book was written for scientists who have problems to solve, and who want to know what methods exist, why and in what circumstances some are better than others, and how to adapt and develop techniques for new problems. The budding numerical analyst should also benefit from this book, and should find some topics for valuable research. The first three parts, in fact, could be used not only by practical men but also by students, though a preliminary elementary course would assist the reading.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations
Author: Kendall Atkinson
Publisher: John Wiley & Sons
Total Pages: 272
Release: 2011-10-24
Genre: Mathematics
ISBN: 1118164520

Download Numerical Solution of Ordinary Differential Equations Book in PDF, Epub and Kindle

A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

The Numerical Solution of Ordinary and Partial Differential Equations

The Numerical Solution of Ordinary and Partial Differential Equations
Author: Granville Sewell
Publisher: Academic Press
Total Pages: 284
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483259145

Download The Numerical Solution of Ordinary and Partial Differential Equations Book in PDF, Epub and Kindle

The Numerical Solution of Ordinary and Partial Differential Equations is an introduction to the numerical solution of ordinary and partial differential equations. Finite difference methods for solving partial differential equations are mostly classical low order formulas, easy to program but not ideal for problems with poorly behaved solutions or (especially) for problems in irregular multidimensional regions. FORTRAN77 programs are used to implement many of the methods studied. Comprised of six chapters, this book begins with a review of direct methods for the solution of linear systems, with emphasis on the special features of the linear systems that arise when differential equations are solved. The next four chapters deal with the more commonly used finite difference methods for solving a variety of problems, including both ordinary differential equations and partial differential equations, and both initial value and boundary value problems. The final chapter is an overview of the basic ideas behind the finite element method and covers the Galerkin method for boundary value problems. Examples using piecewise linear trial functions, cubic hermite trial functions, and triangular elements are presented. This monograph is appropriate for senior-level undergraduate or first-year graduate students of mathematics.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations
Author: L.F. Shampine
Publisher: Routledge
Total Pages: 632
Release: 2018-10-24
Genre: Mathematics
ISBN: 1351427555

Download Numerical Solution of Ordinary Differential Equations Book in PDF, Epub and Kindle

This new work is an introduction to the numerical solution of the initial value problem for a system of ordinary differential equations. The first three chapters are general in nature, and chapters 4 through 8 derive the basic numerical methods, prove their convergence, study their stability and consider how to implement them effectively. The book focuses on the most important methods in practice and develops them fully, uses examples throughout, and emphasizes practical problem-solving methods.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
Total Pages: 356
Release: 2007-01-01
Genre: Mathematics
ISBN: 9780898717839

Download Finite Difference Methods for Ordinary and Partial Differential Equations Book in PDF, Epub and Kindle

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Analytic Methods for Partial Differential Equations

Analytic Methods for Partial Differential Equations
Author: G. Evans
Publisher: Springer Science & Business Media
Total Pages: 308
Release: 2012-12-06
Genre: Mathematics
ISBN: 1447103793

Download Analytic Methods for Partial Differential Equations Book in PDF, Epub and Kindle

This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.

Time-dependent Partial Differential Equations and Their Numerical Solution

Time-dependent Partial Differential Equations and Their Numerical Solution
Author: Heinz-Otto Kreiss
Publisher: Birkhäuser
Total Pages: 87
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034882297

Download Time-dependent Partial Differential Equations and Their Numerical Solution Book in PDF, Epub and Kindle

This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.

Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods
Author: Stig Larsson
Publisher: Springer Science & Business Media
Total Pages: 263
Release: 2008-12-05
Genre: Mathematics
ISBN: 3540887059

Download Partial Differential Equations with Numerical Methods Book in PDF, Epub and Kindle

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
Author: Uri M. Ascher
Publisher: SIAM
Total Pages: 620
Release: 1994-12-01
Genre: Mathematics
ISBN: 9781611971231

Download Numerical Solution of Boundary Value Problems for Ordinary Differential Equations Book in PDF, Epub and Kindle

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.