The Effects of Hypergravity and Microgravity on Biomedical Experiments

The Effects of Hypergravity and Microgravity on Biomedical Experiments
Author: Thais Russomano
Publisher: Springer Nature
Total Pages: 70
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031016246

Download The Effects of Hypergravity and Microgravity on Biomedical Experiments Book in PDF, Epub and Kindle

Take one elephant and one man to the top of a tower and simultaneously drop. Which will hit the ground first? You are a pilot of a jet fighter performing a high-speed loop. Will you pass out during the maneuver? How can you simulate being an astronaut with your feet still firmly placed on planet Earth? In the aerospace environment, human, animal, and plant physiology differs significantly from that on Earth, and this book provides reasons for some of these changes. The challenges encountered by pilots in their missions can have implications on the health and safety of not only themselves but others. Knowing the effects of hypergravity on the human body during high-speed flight led to the development of human centrifuges. We also need to better understand the physiological responses of living organisms in space. It is therefore necessary to simulate weightlessness through the use of specially adapted equipment, such as clinostats, tilt tables, and body suspension devices. Each of these ideas, and more, is addressed in this review of the physical concepts related to space flights, microgravity, and hypergravity simulations. Basic theories, such as Newton’s law and Einstein’s principle are explained, followed by a look at the biomedical effects of experiments performed in space life sciences institutes, universities, and space agencies. Table of Contents: General Concepts in Physics - Definition of Physical Terms / The Effects of Hypergravity on Biomedical Experiments / The Effects of Microgravity on Biomedical Experiments / References

The Effects of Hypergravity and Microgravity on Biomedical Experiments

The Effects of Hypergravity and Microgravity on Biomedical Experiments
Author: Thais Russomano
Publisher: Morgan & Claypool Publishers
Total Pages: 77
Release: 2008
Genre: Biomedical engineering
ISBN: 1598295780

Download The Effects of Hypergravity and Microgravity on Biomedical Experiments Book in PDF, Epub and Kindle

In the aerospace environment, human, animal, and plant physiology differs significantly from that on Earth. This book provides a review of the physical concepts related to space flights, microgravity, and hypergravity simulations. Basic theories, such as Einstein's principle are explained, followed by a look at the biomedical effects of experiments performed in space life sciences institutes, universities, and space agencies.

The Effects Of Hypergravity And Microgravity On Biomedical Experiments

The Effects Of Hypergravity And Microgravity On Biomedical Experiments
Author: Thais Russomano
Publisher:
Total Pages: 70
Release: 2008
Genre: Gravity
ISBN: 9781598295801

Download The Effects Of Hypergravity And Microgravity On Biomedical Experiments Book in PDF, Epub and Kindle

Take one elephant and one man to the top of a tower and simultaneously drop. Which will hit the ground first? You are a pilot of a jet fighter performing a high-speed loop. Will you pass out during the maneuver? How can you simulate being an astronaut with your feet still firmly placed on planet Earth? In the aerospace environment, human, animal, and plant physiology differs significantly from that on Earth, and this book provides reasons for some of these changes. The challenges encountered by pilots in their missions can have implications on the health and safety of not only themselves but others. Knowing the effects of hypergravity on the human body during high-speed flight led to the development of human centrifuges. We also need to better understand the physiological responses of living organisms in space. It is therefore necessary to simulate weightlessness through the use of specially adapted equipment, such as clinostats, tilt tables, and body suspension devices. Each of these ideas, and more, is addressed in this review of the physical concepts related to space flights, microgravity, and hypergravity simulations. Basic theories, such as Newton's law and Einstein's principle are explained, followed by a look at the biomedical effects of experiments performed in space life sciences institutes, universities, and space agencies.

Biological and Medical Research in Space

Biological and Medical Research in Space
Author: David Moore
Publisher: Springer Science & Business Media
Total Pages: 582
Release: 2012-12-06
Genre: Science
ISBN: 3642610994

Download Biological and Medical Research in Space Book in PDF, Epub and Kindle

Life Science studies in space were initially driven by the need to explore how man could survive spaceflight conditions; the effects of being launched un der high accelerations, exposed to weightlessness and radiation for different periods of time, and returned to Earth in safety. In order to substantiate the detailed knowledge of potentially adverse effects, many model experiments were launched using organisms which ranged from bacteria, plants, inverte brates, rodents and primates through to man. Although no immediate life threatening effects were found, these experiments can be considered today as the precursors to life science research in space. Many unexplained effects on these life forms were attributed to the condition of weightlessness. Most of them were poorly recorded, poorly published, or left simply with anecdotal information. Only with the advent of Skylab, and later Spacelab, did the idea emerge, and indeed the infrastructure permit, weightlessness to be considered as an ex tended tool for research into some fundamental mechanisms or processes as sociated with the effect of gravity on organisms at all levels. The initial hy pothesis to extrapolate from hypergravity through 1 x g to near 0 x g effects could no longer be retained, since many of the experiment results were seen to contradict the models or theories in the current textbooks of biology and physiology. The past decade has been dedicated primarily to exploratory research.

Human Factors in Transportation

Human Factors in Transportation
Author: Gesa Praetorius, Charlott Sellberg and Riccardo Patriarca
Publisher: AHFE International
Total Pages: 770
Release: 2023-07-19
Genre: Technology & Engineering
ISBN: 1958651710

Download Human Factors in Transportation Book in PDF, Epub and Kindle

Proceedings of the 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023), July 20–24, 2023, San Francisco, USA

Recapturing a Future for Space Exploration

Recapturing a Future for Space Exploration
Author: National Research Council
Publisher: National Academies Press
Total Pages: 464
Release: 2012-01-30
Genre: Science
ISBN: 0309163846

Download Recapturing a Future for Space Exploration Book in PDF, Epub and Kindle

More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.

Introductory Medical Imaging

Introductory Medical Imaging
Author: Anil Bharath
Publisher: Springer Nature
Total Pages: 172
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031016319

Download Introductory Medical Imaging Book in PDF, Epub and Kindle

This book provides an introduction to the principles of several of the more widely used methods in medical imaging. Intended for engineering students, it provides a final-year undergraduate- or graduate-level introduction to several imaging modalities, including MRI, ultrasound, and X-Ray CT. The emphasis of the text is on mathematical models for imaging and image reconstruction physics. Emphasis is also given to sources of imaging artefacts. Such topics are usually not addressed across the different imaging modalities in one book, and this is a notable strength of the treatment given here. Table of Contents: Introduction / Diagnostic X-Ray Imaging / X-Ray CT / Ultrasonics / Pulse-Echo Ultrasonic Imaging / Doppler Velocimetry / An Introduction to MRI

Models of Horizontal Eye Movements

Models of Horizontal Eye Movements
Author: Alireza Ghahari
Publisher: Morgan & Claypool Publishers
Total Pages: 124
Release: 2015-02-01
Genre: Technology & Engineering
ISBN: 1627056599

Download Models of Horizontal Eye Movements Book in PDF, Epub and Kindle

There are five different types of eye movements: saccades, smooth pursuit, vestibular ocular eye movements, optokinetic eye movements, and vergence eye movements. The purpose of this book series is focused primarily on mathematical models of the horizontal saccadic eye movement system and the smooth pursuit system, rather than on how visual information is processed. In Part 1, early models of saccades and smooth pursuit are presented. A number of oculomotor plant models are described here beginning with the Westheimer model published in 1954, and up through our 1995 model involving a 4th order oculomotor plant model. In Part 2, a 2009 version of a state-of-the-art model is presented for horizontal saccades that is 3rd-order and linear, and controlled by a physiologically based time-optimal neural network. Part 3 describes a model of the saccade system, focusing on the neural network. It presents a neural network model of biophysical neurons in the midbrain for controlling oculomotor muscles during horizontal human saccades. In this book, a multiscale model of the saccade system is presented, focusing on a multiscale neural network and muscle fiber model. Chapter 1 presents a comprehensive model for the control of horizontal saccades using a muscle fiber model for the lateral and medial rectus muscles. The importance of this model is that each muscle fiber has a separate neural input. This model is robust and accounts for the neural activity for both large and small saccades. The muscle fiber model consists of serial sequences of muscle fibers in parallel with other serial sequences of muscle fibers. Each muscle fiber is described by a parallel combination of a linear length tension element, viscous element, and active-state tension generator. Chapter 2 presents a biophysically realistic neural network model in the midbrain to drive a muscle fiber oculomotor plant during horizontal monkey saccades. Neural circuitry, including omnipause neuron, premotor excitatory and inhibitory burst neurons, long lead burst neuron, tonic neuron, interneuron, abducens nucleus, and oculomotor nucleus, is developed to examine saccade dynamics. The time-optimal control mechanism demonstrates how the neural commands are encoded in the downstream saccadic pathway by realization of agonist and antagonist controller models. Consequently, each agonist muscle fiber is stimulated by an agonist neuron, while an antagonist muscle fiber is unstimulated by a pause and step from the antagonist neuron. It is concluded that the neural network is constrained by a minimum duration of the agonist pulse, and that the most dominant factor in determining the saccade magnitude is the number of active neurons for the small saccades. For the large saccades, however, the duration of agonist burst firing significantly affects the control of saccades. The proposed saccadic circuitry establishes a complete model of saccade generation since it not only includes the neural circuits at both the premotor and motor stages of the saccade generator, but it also uses a time-optimal controller to yield the desired saccade magnitude.

Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy

Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy
Author: Anubhab Mukherjee
Publisher: Springer Nature
Total Pages: 84
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031016696

Download Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy Book in PDF, Epub and Kindle

Recently, immunomodulatory nanomaterials have gained immense attention due to their involvement in the modulation of the body’s immune response to cancer therapy. This book highlights various immunomodulatory nanomaterials (including organic, polymer, inorganic, liposomes, viral, and protein nanoparticles) and their role in cancer therapy. Additionally, the mechanism of immunomodulation is reviewed in detail. Finally, the challenges of these therapies and their future outlook are discussed. We believe this book will be helpful to a broad community including students, researchers, educators, and industrialists.

Models of Horizontal Eye Movements, Part I

Models of Horizontal Eye Movements, Part I
Author: John Enderle
Publisher: Springer Nature
Total Pages: 151
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031016424

Download Models of Horizontal Eye Movements, Part I Book in PDF, Epub and Kindle

There are five different types of eye movements: saccades, smooth pursuit, vestibular ocular eye movements, optokinetic eye movements, and vergence eye movements. The purpose of this book is focused primarily on mathematical models of the horizontal saccadic eye movement system and the smooth pursuit system, rather than on how visual information is processed. A saccade is a fast eye movement used to acquire a target by placing the image of the target on the fovea. Smooth pursuit is a slow eye movement used to track a target as it moves by keeping the target on the fovea. The vestibular ocular movement is used to keep the eyes on a target during brief head movements. The optokinetic eye movement is a combination of saccadic and slow eye movements that keeps a full-field image stable on the retina during sustained head rotation. Each of these movements is a conjugate eye movement, that is, movements of both eyes together driven by a common neural source. A vergence movement is a non-conjugate eye movement allowing the eyes to track targets as they come closer or farther away. In this book, early models of saccades and smooth pursuit are presented. The smooth pursuit system allows tracking of a slow moving target to maintain its position on the fovea. Models of the smooth pursuit have been developed using systems control theory, all involving a negative feedback control system that includes a time delay, controller and plant in the forward loop, with unity feedback. The oculomotor plant and saccade generator are the basic elements of the saccadic system. The oculomotor plant consists of three muscle pairs and the eyeball. A number of oculomotor plant models are described here beginning with the Westheimer model published in 1954, and up through our 1995 model involving a 4$^{th}$ order oculomotor plant model. The work presented here is not an exhaustive coverage of the field, but focused on the interests of the author. In Part II, a state-of-art model of the saccade system is presented, including a neural network that controls the system. Table of Contents: Introduction / Smooth Pursuit Models / Early Models of the Horizontal Saccadic Eye Movement System / Velocity and Acceleration Estimation / 1995 Linear Homeomorphic Saccadic Eye Movement Model