The Effect of Elevated Pressure on Soot Formation in a Laminar Jet Diffusion Flame

The Effect of Elevated Pressure on Soot Formation in a Laminar Jet Diffusion Flame
Author:
Publisher:
Total Pages:
Release: 2003
Genre:
ISBN:

Download The Effect of Elevated Pressure on Soot Formation in a Laminar Jet Diffusion Flame Book in PDF, Epub and Kindle

Soot volume fraction (f[subscript sv]) is measured quantitatively in a laminar diffusion flame at elevated pressures up to 25 atmospheres as a function of fuel type in order to gain a better understanding of the effects of pressure on the soot formation process. Methane and ethylene are used as fuels; methane is chosen since it is the simplest hydrocarbon while ethylene represents a larger hydrocarbon with a higher propensity to soot. Soot continues to be of interest because it is a sensitive indicator of the interactions between combustion chemistry and fluid mechanics and a known pollutant. To examine the effects of increased pressure on soot formation, Laser Induced Incandescence (LII) is used to obtain the desired temporally and spatially resolved, instantaneous f[subscript sv] measurements as the pressure is incrementally increased up to 25 atmospheres. The effects of pressure on the physical characteristics of the flame are also observed. A laser light extinction method that accounts for signal trapping and laser attenuation is used for calibration that results in quantitative results. The local peak f[subscript sv] is found to scale with pressure as p[superscript 1.2] for methane and p[superscript 1.7] for ethylene.

Soot Formation in Propane-air Laminar Diffusion Flames at Elevated Pressures [microform]

Soot Formation in Propane-air Laminar Diffusion Flames at Elevated Pressures [microform]
Author: Decio S. (Decio Santos) Bento
Publisher: Library and Archives Canada = Bibliothèque et Archives Canada
Total Pages: 158
Release: 2005
Genre: Combustion
ISBN: 9780494024430

Download Soot Formation in Propane-air Laminar Diffusion Flames at Elevated Pressures [microform] Book in PDF, Epub and Kindle

Laminar axisymmetric propane air diffusion flames were studied at pressures 0.1 to 0.725 MPa (1 to 7.25 atm). To investigate the effect of pressure on soot formation, radially resolved soot temperatures and soot volume fractions were deduced from soot radiation emission scans collected at various pressures using spectral soot emission (SSE). Overall flame stability was quite good as judged by the naked eye. Flame heights varied by 15% and flame axial diameters decreased by 30% over the entire pressure range.Analysis of temperature sensitivity to variations in E lambda(m) revealed that a change in E lambda(m) of +/-20% produced a change in local temperature values of about 75 to 100 K or about 5%.Temperatures decreased and soot concentration increased with increased pressure. More specifically, the peak soot volume fraction showed a power law dependence, fv ∝ Pn where n = 2.0 over the entire pressure range. The maximum integrated soot volume fraction also showed a power law relationship with pressure, f ̄v ∝ Pn where n = 3.4 for 1 ≤ P ≤ 2 atm and n = 1.4 for 2 ≤ P ≤ 7.25 atm. The percentage of fuel carbon converted to soot increased with pressure at a rate, etas ∝ Pn where n = 3.3 and n = 1.1 for 1 ≤ P ≤ 2 atm and 2 ≤ P ≤ 7.25 atm respectively.