Testing the Limits of the Cyrogenic Nucleation Pulse Chamber

Testing the Limits of the Cyrogenic Nucleation Pulse Chamber
Author: Laura Maria Feldmar
Publisher: Cuvillier Verlag
Total Pages: 146
Release: 2016-02-11
Genre: Science
ISBN: 3736982003

Download Testing the Limits of the Cyrogenic Nucleation Pulse Chamber Book in PDF, Epub and Kindle

The cryogenic nucleation pulse chamber was converted for room temperature experiments. The functionality of the chamber was tested by measuring homogeneous nucleation rate isotherms of water at 220, 230 and 240 K. The newly measured nucleation rates agree well with previous data from the room temperature nucleation pulse chamber and from literature. The critical nucleus size from the new data deviates slightly from the older results. The chamber was then converted back to the cryogenic settings and the pulse settings from the room temperature experiments were used in an attempt to measure nucleation rates of argon. Nucleation rates of argon could be measured at 64, 65 and 66 K. A smoothing algorithm was applied to the pressure signal and the nucleation time calculated with the integration method usually used in, among others, supersonic nozzles and laminar flow diffusion chambers. The rates show a temperature trend which is consistent with expectations, but deviate from the classical nucleation theory by up to 42 orders of magnitude. The rates also show significant deviation from the empirical correction function by Iland et al. Homogeneous nucleation onset data for nitrogen was used to determine the nucleus growth rate at T = 52, 54 and 56.5 K, with particle number densities in the range 14193 Nd / cm3 582819. The particle growth rates show the same good agreement with the growth theory by Fuchs and Sutugin as previous measurements of argon and water. The growth rates show the expected temperature dependence of significantly faster growth at high temperatures, largely due to the larger amount of condensible vapor within the system at higher temperatures. The temperature change due to the ongoing expansion after the onset of nucleation was included in the growth rate calculations, but was found to have only a small effect on the predicted growth rate. Growth rates were also measured for pure nitrogen and were found to be slower than predicted by the Fuchs-Sutugin growth theory, despite the onset of nucleation being videntical to those of a mixture of nitrogen and carrier gas.

Nucleation of Water

Nucleation of Water
Author: Ari Laaksonen
Publisher: Elsevier
Total Pages: 296
Release: 2021-11-25
Genre: Science
ISBN: 0128143223

Download Nucleation of Water Book in PDF, Epub and Kindle

Nucleation of Water: From Fundamental Science to Atmospheric and Additional Applications provides a comprehensive accounting of the current state-of-the-art regarding the nucleation of water. It covers vapor-liquid, liquid-vapor, liquid-ice and vapor-ice transitions and describes basic kinetic and thermodynamic concepts in a manner understandable to researchers working on specific applications. The main focus of the book lies in atmospheric phenomena, but it also describes engineering and biological applications. Bubble nucleation, although not of major atmospheric relevance, is included for completeness. This book presents a single, go-to resource that will help readers understand the breadth and depth of nucleation, both in theory and in real-world examples. Offers a single, comprehensive work on water nucleation, including cutting- edge research on ice, cloud and bubble nucleation Written primarily for atmospheric scientists, but it also presents the theories in such a way that researchers in other disciplines will find it useful Written by one of the world’s foremost experts on ice nucleation

Technology of Liquid Helium

Technology of Liquid Helium
Author: Richard H. Kropschot
Publisher:
Total Pages: 388
Release: 1968
Genre: Liquid helium
ISBN:

Download Technology of Liquid Helium Book in PDF, Epub and Kindle

Classical Nucleation Theory in Multicomponent Systems

Classical Nucleation Theory in Multicomponent Systems
Author: Hanna Vehkamäki
Publisher: Springer Science & Business Media
Total Pages: 189
Release: 2006-03-22
Genre: Science
ISBN: 3540312188

Download Classical Nucleation Theory in Multicomponent Systems Book in PDF, Epub and Kindle

Nucleation is the initial step of every first-order phase transition, and most phase transitions encountered both in everyday life and industrial processes are of the first-order. Using an elegant classical theory based on thermodynamics and kinetics, this book provides a fully detailed picture of multi-component nucleation. As many of the issues concerning multi-component nucleation theory have been solved during the last 10-15 years, it also thoroughly integrates both fundamental theory with recent advances presented in the literature. Classical Nucleation Theory in Multicomponent Systems serves as a textbook for advanced thermodynamics courses, as well as an important reference for researchers in the field. The main topics covered are: the basic relevant thermodynamics and statistical physics; modelling a molecular cluster as a spherical liquid droplet; predicting the size and composition of the nucleating critical clusters; kinetic models for cluster growth and decay; calculating nucleation rates; and a full derivation and application of nucleation theorems that can be used to extract microscopic cluster properties from nucleation rate measurements. The assumptions and approximations needed to build the classical theory are described in detail, and the reasons why the theory fails in certain cases are explained. Relevant problems are presented at the end of each chapter.

Nucleation Theory

Nucleation Theory
Author: V.I. Kalikmanov
Publisher: Springer
Total Pages: 319
Release: 2012-11-28
Genre: Science
ISBN: 9048136431

Download Nucleation Theory Book in PDF, Epub and Kindle

One of the most striking phenomena in condensed matter physics is the occurrence of abrupt transitions in the structure of a substance at certain temperatures or pressures. These are first order phase transitions, and examples such as the freezing of water are familiar in everyday life. The conditions at which the transformation takes place can sometimes vary. For example, the freezing point of water is not always 0°C, but the liquid can be supercooled considerably if it is pure enough and treated carefully. The reason for this phenomenon is nucleation. This monograph covers all major available routes of theoretical research of nucleation phenomena (phenomenological models, semi-phenomenological theories, density functional theories, microscopic and semi-microscopic approaches), with emphasis on the formation of liquid droplets from a metastable vapor. Also, it illustrates the application of these various approaches to experimentally relevant problems. In spite of the familiarity of the involved phenomena, it is still impossible to calculate nucleation accurately, as the properties and the kinetics of the daughter phase are insufficiently well known. Existing theories based upon classical nucleation theory have on the whole explained the trends in behavior correctly. However they often fail spectacularly to account for new data, in particular in the case of binary or, more generally, multi-component nucleation. The current challenge of this book is to go beyond such classical models and provide a more satisfactory theory by using density functional theory and microscopic computer simulations in order to describe the properties of small clusters. Also, semi-phenomenological models are proposed, which attempt to relate the properties of small clusters to known properties of the bulk phases. This monograph is an introduction as well as a compendium to researchers in soft condensed matter physics and chemical physics, graduate and post-graduate students in physics and chemistry starting on research in the area of nucleation, and to experimentalists wishing to gain a better understanding of the efforts being made to account for their data.

Synthesis Methods and Crystallization

Synthesis Methods and Crystallization
Author: Riadh Marzouki
Publisher: BoD – Books on Demand
Total Pages: 138
Release: 2020-10-07
Genre: Technology & Engineering
ISBN: 1838802231

Download Synthesis Methods and Crystallization Book in PDF, Epub and Kindle

New crystalline materials (organic, inorganic, hybrid) are promising for various applications, including electrical, piezoelectric, ferroelectric, magnetic, and catalytic processes. In addition, given their remarkable structural richness, these materials exhibit several interesting physical properties, such as ionic conduction, ion exchange, and others. Crystal growth, morphology, and grain size are factors influencing these physical properties. This book examines methods of synthesis of the most common crystalline materials and describes nucleation and crystal growth of various materials.

Heat Capacity and Thermal Expansion at Low Temperatures

Heat Capacity and Thermal Expansion at Low Temperatures
Author: T.H.K. Barron
Publisher: Springer Science & Business Media
Total Pages: 342
Release: 2012-12-06
Genre: Science
ISBN: 1461546958

Download Heat Capacity and Thermal Expansion at Low Temperatures Book in PDF, Epub and Kindle

The birth of this monograph is partly due to the persistent efforts of the General Editor, Dr. Klaus Timmerhaus, to persuade the authors that they encapsulate their forty or fifty years of struggle with the thermal properties of materials into a book before they either expired or became totally senile. We recognize his wisdom in wanting a monograph which includes the closely linked properties of heat capacity and thermal expansion, to which we have added a little 'cement' in the form of elastic moduli. There seems to be a dearth of practitioners in these areas, particularly among physics postgraduate students, sometimes temporarily alleviated when a new generation of exciting materials are found, be they heavy fermion compounds, high temperature superconductors, or fullerenes. And yet the needs of the space industry, telecommunications, energy conservation, astronomy, medical imaging, etc. , place demands for more data and understanding of these properties for all classes of materials - metals, polymers, glasses, ceramics, and mixtures thereof. There have been many useful books, including Specific Heats at Low Tempera tures by E. S. Raja Gopal (1966) in this Plenum Cryogenic Monograph Series, but few if any that covered these related topics in one book in a fashion designed to help the cryogenic engineer and cryophysicist. We hope that the introductory chapter will widen the horizons of many without a solid state background but with a general interest in physics and materials.

Laser Ablation in Liquids

Laser Ablation in Liquids
Author: Guowei Yang
Publisher: CRC Press
Total Pages: 1166
Release: 2012-02-22
Genre: Science
ISBN: 9814241520

Download Laser Ablation in Liquids Book in PDF, Epub and Kindle

This book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applic

Semiconductor Laser Engineering, Reliability and Diagnostics

Semiconductor Laser Engineering, Reliability and Diagnostics
Author: Peter W. Epperlein
Publisher: John Wiley & Sons
Total Pages: 522
Release: 2013-01-25
Genre: Technology & Engineering
ISBN: 1118481860

Download Semiconductor Laser Engineering, Reliability and Diagnostics Book in PDF, Epub and Kindle

This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.