Terrestrial Laser Scanning-Based Bridge Structural Condition Assessment

Terrestrial Laser Scanning-Based Bridge Structural Condition Assessment
Author: Yelda Turkan
Publisher:
Total Pages: 37
Release: 2016
Genre: Bridges
ISBN:

Download Terrestrial Laser Scanning-Based Bridge Structural Condition Assessment Book in PDF, Epub and Kindle

Objective, accurate, and fast assessment of a bridge's structural condition is critical to the timely assessment of safety risks. Current practices for bridge condition assessment rely on visual observations and manual interpretation of reports and sketches prepared by inspectors in the field. Visual observation, manual reporting, and interpretation have several drawbacks, such as being labor intensive, subject to personal judgment and experience, and prone to error. Terrestrial laser scanners (TLS) are promising sensors for automatically identifying structural condition indicators, such as cracks, displacements, and deflected shapes, because they are able to provide high coverage and accuracy at long ranges. However, limited research has been conducted on employing laser scanners to detect cracks for bridge condition assessment, and the research has mainly focused on manual detection and measurement of cracks, displacements, or shape deflections from the laser scan point clouds. This research project proposed to measure the performance of TLS for the automatic detection of cracks for bridge structural condition assessment. Laser scanning is an advanced imaging technology that is used to rapidly measure the three-dimensional (3D) coordinates of densely scanned points within a scene. The data gathered by a laser scanner are provided in the form of point clouds, with color and intensity data often associated with each point within the cloud. Point cloud data can be analyzed using computer vision algorithms to detect cracks for the condition assessment of reinforced concrete structures. In this research project, adaptive wavelet neural network (WNN) algorithms for detecting cracks from laser scan point clouds were developed based on the state-of-the-art condition assessment codes and standards. Using the proposed method for crack detection would enable automatic and remote assessment of a bridge's condition. This would, in turn, result in reducing the costs associated with infrastructure management and improving the overall quality of our infrastructure by enhancing maintenance operations.

Laser Scanning

Laser Scanning
Author: Belén Riveiro
Publisher: CRC Press
Total Pages: 270
Release: 2019-10-18
Genre: Technology & Engineering
ISBN: 135101885X

Download Laser Scanning Book in PDF, Epub and Kindle

This book provides an overview on the evolution of laser scanning technology and its noticeable impact in the structural engineering domain. It provides an up-to-date synthesis of the state-of-the-art of the technology for the reverse engineering of built constructions, including terrestrial, mobile, and different portable solutions, for laser scanning. Data processing of large point clouds has experienced an important advance in the last years, and thus, an intense activity in the development of automated data processing algorithms has been noticed. Thus, this book aims to provide an overview of state-of-the-art algorithms, different best practices and most recent processing tools in connection to particular applications. Readers will find this a comprehensive book, that updates the practice of laser scanning for researchers and professionals not only from the geomatic domain, but also other fields such as structural and construction engineering. A set of successful applications to structural engineering are illustrated, including also synergies with other technologies, that can inspire professionals to adopt laser scanning in their day-to-day activity. This cutting-edge edited volume will be a valuable resource for students, researchers and professional engineers with an interest in laser scanning and its applications in the structural engineering domain.

Laser Scanning Technology as Part of a Comprehensive Condition Assessment for Covered Bridges

Laser Scanning Technology as Part of a Comprehensive Condition Assessment for Covered Bridges
Author: Brian K. Brashaw
Publisher:
Total Pages: 10
Release: 2015
Genre: Covered bridges
ISBN:

Download Laser Scanning Technology as Part of a Comprehensive Condition Assessment for Covered Bridges Book in PDF, Epub and Kindle

New noncontact technologies have been developed and implemented for determining as-built condition and current dimensions for a wide variety of objects and buildings. In this study, a three-dimensional laser scanner was used to determine the dimensions and visual condition of a historic bridge in the Amnicon Falls State Park in northern Wisconsin. 3D scanning provides millions of data points of information about the bridge being inspected. The point clouds of data collected depict all visible aspects and actual dimensions of the bridge. This information can be used to determine areas of the bridge that show excessive deflection, rotation or skew of the structure, damaged members, and other visual indicators that a human eye cannot easily identify or quantify. This technique could be incorporated into a comprehensive inspection protocol for historic covered bridges that includes 3D laser scanning, visual inspection, hammer sounding and probing, moisture content determination, stress-wave timing, and resistance microdrilling.

Diagnosis & Prognosis of AAR Affected Structures

Diagnosis & Prognosis of AAR Affected Structures
Author: Victor E. Saouma
Publisher: Springer Nature
Total Pages: 594
Release: 2020-09-21
Genre: Technology & Engineering
ISBN: 3030440141

Download Diagnosis & Prognosis of AAR Affected Structures Book in PDF, Epub and Kindle

This book presents the work of the RILEM Technical Committee 259-ISR. Addressing two complementary but fundamental issues: the kinetics of the reaction, and how this will affect the integrity of the structure (serviceability and strength), it also provides methodology for assessing past deterioration to enable readers to make engineering/science-based predictions concerning future expansion. The book is divided into six major topics: selection and interpretation of optimal monitoring system for structures undergoing expansion to monitor the progress of the swelling evolution and its consequences; development/refinement of current laboratory procedures to determine the kinetics of the reaction i.e. expansion vs (future) time, and to determine the kinetic characteristics of the time-dependent reaction to be used in a finite element simulation; extrapolation of results from structural component laboratory testing; selection of material properties based on data from existing structures affected by the alkali silica reaction or delayed ettringite formation; identification of critical features that should be present in a finite element code, development of test problems for validation, and a survey of relevant programs able to conduct a transient structural analysis of a structure undergoing chemically induced expansion; and lastly guidelines for finite element codes. The book is intended for practitioners responsible for concrete structures affected by the damaging alkali aggregate reaction, engineers dealing with aging structures, and researchers in the field.

Performance Evaluation of a Bridge Infrastructure Using Terrestrial Laser Scanning Technology

Performance Evaluation of a Bridge Infrastructure Using Terrestrial Laser Scanning Technology
Author: Ali Shafikani
Publisher:
Total Pages: 19
Release: 2018
Genre: Performance
ISBN:

Download Performance Evaluation of a Bridge Infrastructure Using Terrestrial Laser Scanning Technology Book in PDF, Epub and Kindle

Monitoring techniques, used to assess the condition of infrastructures, have been impacted by the rapid developments in remote sensing technology. While these technologies have improved performance evaluation, cogent procedures for evaluating ground movements have yet to be developed. This article presents an application of the three-dimensional terrestrial laser scanning (3D-TLS) technology for assessing the performance of bridge infrastructures, including highway embankments, bridge decks, approach slabs, abutments, and columns supported on drilled shafts. In this research study, a framework was developed, using 3D-TLS technology, to evaluate the ground movements. The survey process, variables, and analysis were demonstrated by performing the field operations at a rehabilitated bridge infrastructure located in North Texas. The analysis depicted vertical movements that were experienced by the approach slab during different time periods. The validation of 3D-TLS results was performed by comparing the vertical movements from the four horizontal inclinometers installed underneath the pavement. The comparison studies revealed similar movement patterns of both inclinometers and processed scans, while the latter provided detailed soil movements over a larger area.

Health Assessment of Engineered Structures

Health Assessment of Engineered Structures
Author: Achintya Haldar
Publisher: World Scientific
Total Pages: 352
Release: 2013
Genre: Technology & Engineering
ISBN: 9814439029

Download Health Assessment of Engineered Structures Book in PDF, Epub and Kindle

This book covers some of the most recent developments and application potentials in structural health assessment for non-experts in the subject. Among topics addressed are sensor types, platforms and data conditioning for practical applications, wireless collection of sensor data, sensor power needs and on-site energy harvesting, long-term monitoring of structures, uncertainty in collected data, and future directions in structural health assessment.

Laser Scanning

Laser Scanning
Author: Belén Riveiro
Publisher: CRC Press
Total Pages: 355
Release: 2019-10-18
Genre: Technology & Engineering
ISBN: 1351018841

Download Laser Scanning Book in PDF, Epub and Kindle

This book provides an overview on the evolution of laser scanning technology and its noticeable impact in the structural engineering domain. It provides an up-to-date synthesis of the state-of-the-art of the technology for the reverse engineering of built constructions, including terrestrial, mobile, and different portable solutions, for laser scanning. Data processing of large point clouds has experienced an important advance in the last years, and thus, an intense activity in the development of automated data processing algorithms has been noticed. Thus, this book aims to provide an overview of state-of-the-art algorithms, different best practices and most recent processing tools in connection to particular applications. Readers will find this a comprehensive book, that updates the practice of laser scanning for researchers and professionals not only from the geomatic domain, but also other fields such as structural and construction engineering. A set of successful applications to structural engineering are illustrated, including also synergies with other technologies, that can inspire professionals to adopt laser scanning in their day-to-day activity. This cutting-edge edited volume will be a valuable resource for students, researchers and professional engineers with an interest in laser scanning and its applications in the structural engineering domain.

Dynamics of Civil Structures, Volume 2

Dynamics of Civil Structures, Volume 2
Author: Shamim Pakzad
Publisher: Springer
Total Pages: 370
Release: 2018-06-11
Genre: Science
ISBN: 3319744216

Download Dynamics of Civil Structures, Volume 2 Book in PDF, Epub and Kindle

Dynamics of Civil Structures, Volume 2: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the second volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Civil Structures, including papers on: Modal Parameter Identification Dynamic Testing of Civil Structures Control of Human Induced Vibrations of Civil Structures Model Updating Damage Identification in Civil Infrastructure Bridge Dynamics Experimental Techniques for Civil Structures Hybrid Simulation of Civil Structures Vibration Control of Civil Structures System Identification of Civil Structures

Laser Scanner Technology

Laser Scanner Technology
Author: J. Apolinar Munoz Rodriguez
Publisher: BoD – Books on Demand
Total Pages: 274
Release: 2012-03-28
Genre: Technology & Engineering
ISBN: 953510280X

Download Laser Scanner Technology Book in PDF, Epub and Kindle

Laser scanning technology plays an important role in the science and engineering arena. The aim of the scanning is usually to create a digital version of the object surface. Multiple scanning is sometimes performed via multiple cameras to obtain all slides of the scene under study. Usually, optical tests are used to elucidate the power of laser scanning technology in the modern industry and in the research laboratories. This book describes the recent contributions reported by laser scanning technology in different areas around the world. The main topics of laser scanning described in this volume include full body scanning, traffic management, 3D survey process, bridge monitoring, tracking of scanning, human sensing, three-dimensional modelling, glacier monitoring and digitizing heritage monuments.

Laser-based Structural Sensing and Surface Damage Detection

Laser-based Structural Sensing and Surface Damage Detection
Author: Burcu Guldur
Publisher:
Total Pages: 375
Release: 2014
Genre: Bridges
ISBN:

Download Laser-based Structural Sensing and Surface Damage Detection Book in PDF, Epub and Kindle

Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of this research is to combine useful information extracted from laser scanner data with color information, which provides information in the fourth dimension that enables detection of damage types such as cracks, corrosion, and related surface defects that are generally difficult to detect using only laser scanner data; moreover, the color information also helps to track volumetric changes on structures such as spalling. Although using images with varying resolution to detect cracks is an extensively researched topic, damage detection using laser scanners with and without color images is a new research area that holds many opportunities for enhancing the current practice of visual inspections. The aim is to combine the best features of laser scans and images to create an automatic and effective surface damage detection method, which will reduce the need for skilled labor during visual inspections and allow automatic documentation of related information. This work enables developing surface damage detection strategies that integrate existing condition rating criteria for a wide range damage types that are collected under three main categories: small deformations already existing on the structure (cracks); damage types that induce larger deformations, but where the initial topology of the structure has not changed appreciably (e.g., bent members); and large deformations where localized changes in the topology of the structure have occurred (e.g., rupture, discontinuities and spalling). The effectiveness of the developed damage detection algorithms are validated by comparing the detection results with the measurements taken from test specimens and test-bed bridges.