Multidentate Phosphino-alkene Ligands and Their Late Transition Metal Complexes

Multidentate Phosphino-alkene Ligands and Their Late Transition Metal Complexes
Author: Amanda G. Jarvis
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Multidentate Phosphino-alkene Ligands and Their Late Transition Metal Complexes Book in PDF, Epub and Kindle

The synthesis and characterisation of a new class of multidentate conformationally flexible phosphino-alkene ligands, called dbaPHOS (127) and monodbaPHOS (128), are described is this PhD thesis. The related phosphine sulphide ligands, namely dbaTHIOPHOS (137) and monodbaTHIOPHOS (149), have also been prepared. The coordination chemistry of the novel ligands was investigated with a variety of late-transition metals, including Cu, Rh, Pd and Pt. X-ray crystal structure determination of the complexes containing these ligands highlights the multiple coordination modes and versatility of each ligand system. The ability of the 1,4-dien-3-one backbone to adopt different conformational geometries around metal centers is of particular note. DbaPHOS (127) was found to act as a cis- and trans-chelating bisphosphine in both square planar PdII and PtII complexes. The 1,4-dien-3-one motif is hemilabile; exchange between coordinated and non-coordinated alkenes is observed in both the Pd0 complex, 167, and the related cationic CuI complex, 193. An investigation into the CuI complexes' activity in the cyclopropanation of styrene, as catalysts, showed that they are commensurate with other recently reported systems. In addition to the coordination chemistry of the novel ligand systems, some interesting findings emerged in the ligand synthesis and characterisation studies. For example, monodbaTHIOPHOS (149) undergoes an interesting solid-state [2+2] intramolecular cycloaddition transformation, giving cycloadduct, 206. Furthermore, 2-hydroperoxytetrahydrofuran was found to be an impurity in the microwave-assisted Horner-Wadsworth-Emmons reaction of 2-(diphenylthiophosphine)benzaldehyde (136) with 1,3-bis-(ethoxyphosphonato)-acetone (130) to give of dbaTHIOPHOS (137) and an unexpected THF insertion product, 138. The latter is explained by a side reaction involving the reduced compound, tetrahydrofuran-2-ol, derived from 2-hydroperoxytetrahydrofuran.

Synthesis and Coordination Chemistry of Multidentate Ligands Based on Nitrogen-containing Heterocyclic Phenanthridine Moieties

Synthesis and Coordination Chemistry of Multidentate Ligands Based on Nitrogen-containing Heterocyclic Phenanthridine Moieties
Author: Rajarshi Mondal
Publisher:
Total Pages: 0
Release: 2020
Genre:
ISBN:

Download Synthesis and Coordination Chemistry of Multidentate Ligands Based on Nitrogen-containing Heterocyclic Phenanthridine Moieties Book in PDF, Epub and Kindle

This project explored the synthesis of bi-functional neutral donor ligands using pi-extended phenanthridine system which can stabilize the late transition metals. My interest would be the phenanthridine ring of 14 pi-electron polycyclic heteroaromatic system, which is the building block of my ligands and the properties of this extended aromatic system while binding with late transition metals and comparing with smaller congener quinoline precursor for understanding the effect of site dependent pi extension. The application and properties of designed metal complexes have been extensively studied. The study of using pi-extended phenanthridine as a ligand and its metal complexes would open a new window of opportunities. A synthetic route to bromo functionalization of benzo-fused N-heterocyclic phenanthridine, enabling the constructions of both phosphinophenanthridine and NHC carbene-phenanthridine have been devised, which are heterobifunctional Lewis base containing both phosphine/carbene and phenanthridine donors. The coordination chemistry for both phosphine/carbene ligands with ions of late first-row transition metals has been explored. 4-Bromophenanthridine was synthesized by Suzuki cross-coupling/condensation, 6-substitution was conducted by reaction between phenanthridinone and phosphine(V) oxyhalide. The installation of phosphine was directed by lithium-halogen exchange of 4-bromophenanthridine. The carbenes were placed by the reaction between 6-halophenanthridine and corresponding imidazole in high temperature. A series of halide bridge Cu complexes were synthesized using phosphino-phenanthridine ligand to check the effect of site selective pi-extension on emission property by comparing with smaller congener quinoline based Cu complexes. Further study leads to design of sterically encumbered phenanthridine for diminishing the excited state geometric orientation. A relative effect of counterion in solid-state emission lifetime has also been studied. A group of octahedral d8 metal complexes were synthesized by using both phosphine/carbene ligands to study the metal to ligand charge transfer and its lifetime. The potential of these complexes for use in the field of photosensitizer was also discussed. Phosphino ligand based Fe complexes have been synthesized and their use in the filed of hydrogenation catalysis has also been discussed.

Coordination Chemistry of Multidentate Ligands from a Multi-component Reaction

Coordination Chemistry of Multidentate Ligands from a Multi-component Reaction
Author: Ann Almesaker
Publisher:
Total Pages: 250
Release: 2009
Genre:
ISBN:

Download Coordination Chemistry of Multidentate Ligands from a Multi-component Reaction Book in PDF, Epub and Kindle

The application of a multi-component reaction approach has been explored in the synthesis of intricate ligands incorporating the commonly employed ligand motifs bis(2-pyridylmethyl)amine (bPMA) and tris(2-aminoethyl)amine (tren). The synthesis of these ligands demonstrates that multi-component reactions can be an area with high exploratory power in ligand syntheses as they have the potential to afford ligands with a diverse variety of structures by a simple methodology.The coordination chemistry of one bPMA based ligand has been examined with a range of transition metal ions (i.e. MnII, CoII and CuII). The structures of several of these products have been determined by X-ray crystallography and their properties examined by various spectroscopic methods. The complexes are discussed in terms of similarities and differences in the solid state between the different metal ions in combination with different counter ions. Mononuclear and dinuclear complexes, and one case of a 1D coordination polymer were isolated.The spectroscopic properties of copper(II) complexes formed by two analogous tren based ligands were studied. From these studies, it could be concluded that the two ligands formed analogous complexes in both solution and in the solid state. Data on three of the copper(II) tren complexes were collected using synchrotron radiation due to the small size of the isolated crystals. These complexes were found to have trigonal bipyramidal coordination geometry around the mononuclear copper(II) centre. Two isomeric copper(II) nitrate complexes with minor differences in the copper(II) geometries were isolated. In addition, a copper(II) fluoride complex [CuLF]BF4·THF (L = tren based ligand) was studied which interestingly exhibited a very short Cu-F bond, in fact theshortest reported to present time.The copper(II) complexes were further investigated in catalytic oxidation reactions and small ion stabilisation studies. The complexes had poor catalytic activity in catechol oxidation and in oxidative coupling of 2,6-di-tert-butylphenol. However, the bPMA based copper(II) complex showed an initially relatively high catalytic activity in the oxidative coupling reaction, but underwent deactivation. The complexes were not worthy of further investigation in these reactions due to the low catalytic activity. Preliminary results pointed to the fact that the tren based ligands were able to stabilise Cu-OOH species in the solution at low temperatures (-60 and -80 °C). Such complexes are of interest in the elucidation of enzymatic mechanisms of monooxygenases such as peptidylglycine [alpha]-hydroxylating monooxygenases and dopamine [beta]-monooxygenases. These Cu-OOH complexes also demonstrated evidence of partial ligand oxidation upon warming the solutions containing the complexes.Overall a range of ligands structures with intricate structures have been synthesised by a multi-component approach and used to prepare transition metal complexes (CuII, CoII and MnII) which display interesting properties due to the unusual ligand frameworks with large pendant substituents.

Transition Metal Complexes with P,N-Ligands and Silylenes: Synthesis and Catalytic Studies

Transition Metal Complexes with P,N-Ligands and Silylenes: Synthesis and Catalytic Studies
Author: Eva Neumann
Publisher: Cuvillier Verlag
Total Pages: 244
Release: 2006-02-15
Genre: Science
ISBN: 3736918011

Download Transition Metal Complexes with P,N-Ligands and Silylenes: Synthesis and Catalytic Studies Book in PDF, Epub and Kindle

The term ligand [latin, ligare = bind] has its origin in coordination chemistry. It denotes a molecule that is able to bind to a metal center in most cases via one or several free electron pairs.[1] Ligands can be described by the number of electron-pair donor atoms as monodentate, bidentate, tridentate etc. ligands. The latter are also called chelating ligands [greek, chele = (crab’s) claw]. A typical classification of ligands is according to their electronic properties. They serve either as a σ-donating, σ-donating/π-accepting, or σ,π-donating/π-accepting ligands.[2] A more practical, often encountered approach is the classification of ligands according to their donor atoms, especially when larger molecules and molecules containing heteroatoms are regarded (compare 1.2). Coordination chemistry was already established in the 19th century. In 1893 Alfred Werner suggested an octahedral arrangement of ligands coordinated to a central metal ion for many compounds. This explained, for example, the appearance and reactivity of four different cobalt(III) complexes (Figure 1.1), when CoCl2 is dissolved in aqueous ammonia and then oxidized by air to the +3 oxidation state. The formulas of these complexes can be written as depicted in Figure 1.1. Werner’s work was rewarded with the Nobel prize in 1913.[3]