Synthesis, Characterization, and Reactivity Studies of Iron Complexes Supported by the Redox-active [ONO] Ligand

Synthesis, Characterization, and Reactivity Studies of Iron Complexes Supported by the Redox-active [ONO] Ligand
Author: Janice Lin Wong
Publisher:
Total Pages: 123
Release: 2014
Genre:
ISBN: 9781321094466

Download Synthesis, Characterization, and Reactivity Studies of Iron Complexes Supported by the Redox-active [ONO] Ligand Book in PDF, Epub and Kindle

The work reported herein primarily focuses on the development of new platforms for multi-electron reactivity using iron complexes supported by a redox-active pincer-type ligand. This dissertation details the synthesis, characterization, and reactivity of iron complexes coordinated to the redox-active [ONO] ([ONO]H3 = bis(3,5-di-[tert]-butyl-2-phenol)amine) ligand. Chapter 1 provides a general background on ligand-centered and metal-centered redox reactivity. Specifically, the characteristics of redox-active ligands and their ability to promote multi-electron reactivity at redox-inert metal centers is presented. In addition, iron-catalyzed organic transformations in which the metal center undergoes redox changes is also discussed. Finally, ligand-enabled redox reactions mediated by iron complexes containing redox-active ligands is described. Chapter 2 reports on the complexation of bis(3,5-di-[tert]-butyl-2-phenoxy)amine, [ONHO], and the redox-active [ONO] ligands by iron centers to afford a new family of iron complexes. Characterizations of each compound through a battery of analytical techniques reveal the oxidation states of the metal center and ligand. Furthermore, the electronic properties of each complex were investigated in order to evaluate their potential to facilitate multi-electron reactivity. Chapter 3 details the reactivity of the [ONO]Fe platform. Metathesis reactions are conducted with [ONO [superscript q] Fe [superscript III] X2 (X = Cl, N[SiMe3]2 complexes, demonstrating the capability of the fully-oxidized [ONO [superscript q]−1 to act as a two-electron acceptor to generate the fully reduced [ONO [superscript cat]3− that is coordinated to an iron(III) center. Similarly, oxidation of [ONO[superscript cat] Fe [superscript III] (py)3 (py = pyridine) using dihalogens result in two-electron oxidations of the tridentate ligand while the metal oxidation state remains the same. These redox reactions showcase the ability of the [ONO] ligand platform to undergo reversible two-electron oxidation state changes, allowing multi-electron reactivity to occur at the iron center. The synthesis and characterization of two novel bimetallic complexes of the form [ONO]M'[ONO]2 M (M' = Fe, Zn; M = Fe) are presented in Chapter 4. The rich redox profiles of both complexes suggest that they can potentially impart unique cooperative bimetallic reactivity. The synthetic techniques developed to prepare these complexes lay the foundation for a general method to access new bimetallic combinations that could be promising for multi-electron reactivity. Finally, Chapter 5 discusses the synthesis, characterization, and electronic comparisons between two homoleptic tris-iminosemiquinonate chromium(III) compounds. While one is coordinated to three N,N'-bis(3,5-dimethylphenyl)acenapthenediimino-semiquinonate, (dmp-ADI [superscript sq])1−, ligands, the other contains three N,N'-bis(3,5-dimethylphenyl)phenanthrenediimino-semiquinonate, (dmp-PDIsq)1− ligands. The differences in the electronic properties between each complex likely stems from variation in the diimine ligand backbones. However, further investigation is required to completely understand the complicated behaviors of such complexes, both of which apparently exhibit intramolecular anti-ferromagnetic properties.

High- and Low-Valent tris-N-Heterocyclic Carbene Iron Complexes

High- and Low-Valent tris-N-Heterocyclic Carbene Iron Complexes
Author: Carola S. Vogel
Publisher: Springer Science & Business Media
Total Pages: 145
Release: 2012-02-03
Genre: Science
ISBN: 3642272541

Download High- and Low-Valent tris-N-Heterocyclic Carbene Iron Complexes Book in PDF, Epub and Kindle

Carola Vogel’s PhD thesis focuses on the synthesis, and structural and spectroscopic characterization of the first high valent iron nitride complexes. In her interdisciplinary and collaborative research Carola also describes the reactivity studies of a unique iron (V) nitride complex with water. These studies show that quantitative yields of ammonia are given at ambient conditions. High valent iron nitride and oxo species have been proposed as key intermediates in many bio-catalytic transformations, but until now these species have proven exceedingly challenging to isolate and study. Iron complexes in high oxidation states can thus serve as models for iron-containing enzymes to help us understand biological systems or aid our development of more efficient industrial catalysts.

Design, Synthesis and Characterization of New Ligands and Activators for the Oligomerization of Ethylene by Iron Complexes

Design, Synthesis and Characterization of New Ligands and Activators for the Oligomerization of Ethylene by Iron Complexes
Author: Adrien Boudier
Publisher:
Total Pages: 0
Release: 2012
Genre:
ISBN:

Download Design, Synthesis and Characterization of New Ligands and Activators for the Oligomerization of Ethylene by Iron Complexes Book in PDF, Epub and Kindle

This thesis describes the development of new catalytic systems based upon iron complexes and their reactivity toward ethylene. First, we focused our interest on the synthesis of iron(III) precursors chelated by monoanionic ligand. Those complexes were obtained either by reaction of the monoanionic ligand with FeCl3 or through oxidation of the iron(II) complex. The second reaction led to binuclear complexes. Then, another aim of the thesis was to design new well-defined cocatalysts for the activation of iron complexes. The study of the reaction between an alcohol and the trimethylaluminum allowed us to reach this aim. Aluminum complexes adopted either a binuclear framework or a trinuclear one, depending on the nature of alcohol reagent. Besides this work, new iron(II) and nickel(II) complexes chelated by imino-imidazole ligands bearing a pendant donor function L were synthesized. All complexes have been evaluated for the oligomerization of ethylene in the presence of EtAlCl2 or MAO as cocatalyst. Only nickel complexes were active toward ethylene transformation.

Iron Chemistry of Hemilabile SNS Ligands

Iron Chemistry of Hemilabile SNS Ligands
Author: Uttam Das
Publisher:
Total Pages:
Release: 2018
Genre:
ISBN:

Download Iron Chemistry of Hemilabile SNS Ligands Book in PDF, Epub and Kindle

The development of abundant and economical first-row transition metal-based catalysts is an appealing area of research for efficient and selective chemical transformations. In this context, iron complexes are highly desirable as they feature a range of accessible oxidation states allowing for transfer of one or two electrons to or from a substrate. Therefore, over the past two decades, many iron-based catalysts have been developed, extensively studied, and exploited for catalysis ranging from oxidation and reduction to C-C bond forming reactions. In homogeneous transition metal catalysis, the ligand plays a vital role in determining activity and selectivity of the above stated catalytic reactions. Some key features of ligands that support both stoichiometric and catalytic reactions of metal complexes include: 1) strong chelation ability to metals, 2) tunability of donor atoms, 3) strong field ligands such as phosphine, phosphite, CO, and hydride favoring low-spin complexes, 4) hemilability allowing substrate activation via reversible dissociation of one donor atom, and 5) redox-activity enabling donation or accepting of electrons, thus avoiding a change of metal oxidation state. To this end, bifunctional ligands containing the above described properties have emerged as important elements in chemical synthesis and in catalysis. Iron and other transition metal complexes containing multidentate bifunctional ligands have recently been shown to activate small molecules and catalyze a number of chemical transformations with activity and selectivity typical of more well-studied precious metals. The objective of this thesis is to further advance the field of bifunctional ligands by preparing new sterically svelte tridentate ligands with a mixture of hard nitrogen and soft sulfur donors and to investigate their iron chemistry. The overall goal is to then explore the utility of these iron complexes as potential bifunctional catalysts. Chapter 2 describes a one-step synthesis of a new SMeNHS ligand in excellent yield that undergoes ring-opening on treatment with Fe(OTf)2 affording a thiolate-bridged, trinuclear iron complex, [Fe3(μ2-SMeNS−)4](OTf)2. The structure, spectroscopic, magnetic, and computational studies of this iron complex are provided along with its solvent-dependent reactivity towards monodentate donor ligands that yields both dinuclear and mononuclear derivatives. Chapter 3 describes the formation of an electron-rich Fe(II) thiolate complex, [Fe(SMeNS)(PMe3)3](OTf) and its substitution reactivity with both mono- and bidentate donor ligands. On heating this complex, an oxidative thioether Caryl-S bond cleavage is observed, leading to a cationic Fe(III)-CNS thiolate analog. Reduction of this Fe(III) species with cobaltocene yielded a neutral Fe(II)-CNS thiolate complex. To investigate the bifunctional activity of these Fe(II) complexes, both Fe(II)-SNS and -CNS species were assessed as precatalysts for amine-borane dehydrogenation. Chapter 4 employs the SMeNHS ligand in formation of a neutral, imine-coupled Fe-N2S2 complex that serves as an efficient and selective aldehyde hydroboration catalyst using pinacolborane. A reaction profile kinetic analysis implicates the hemilability and redox-active properties of this complex. Chapter 5 introduces the new unsymmetrical amine ligand, SMeNHSMe, and details its iron chemistry with formation of a pseudooctahedral Fe(II) bis(amido) complex. The Mössbauer spectra, MCD study, and DFT calculations support formation of a minor five-coordinate isomer in solution due to the hemilability of the six-membered ring thioether group. Reactivity studies of this Fe(II) species with a variety of donor ligands confirmed this lability and protonation at nitrogen yielded a cationic Fe(II) amine-amido complex. Reaction of the latter with the tridentate phosphine, triphos, gave a 16e-, low-spin, square-pyramidal Fe(II) complex that proved to be a robust precatalyst that is more active for dehydrogenation of dimethylamine-borane vs. ammonia-borane. Formation of a monohydride catalyst resting state under these reaction conditions is suggestive of a bifunctional activation pathway. Finally, Chapter 6 concludes the outcomes of the iron chemistry of hemilabile SNS ligands and discusses future directions and opportunities to extend these ligand systems to other transition metals. The knowledge gained by the stoichiometric and catalytic reactivity of iron-SNS complexes presented herein contributes to our understanding of bifunctional catalysis. With the increasing demand for base metal catalysts in chemical industry for efficient and selective synthesis of value-added chemicals, iron SNS complexes could offer economical, active, and selective catalyst precursors.