Synthesis and Characterization of Transition Metal Oxide Catalysts for Environmental and Energy Storage Applications

Synthesis and Characterization of Transition Metal Oxide Catalysts for Environmental and Energy Storage Applications
Author: Wenqiao Song
Publisher:
Total Pages:
Release: 2016
Genre: Electronic dissertations
ISBN:

Download Synthesis and Characterization of Transition Metal Oxide Catalysts for Environmental and Energy Storage Applications Book in PDF, Epub and Kindle

Nowadays, environmental concerns and the global energy crisis have become two of our greatest challenges. The main purpose of this dissertation research is to design highly active mesoporous materials that can efficiently catalyze environmental and energy related reactions. Surface properties can be easily tuned by thermal treatment and cation doping, resulting in improved catalytic activities. Synthesis and characterization of the materials, catalytic activities for carbon monoxide oxidation, oxygen reduction and oxygen evolution reactions, and mechanistic studies are covered in this thesis. The first part describes the synthesis of mesoporous cobalt oxides through an inverse micelle route for low temperature carbon monoxide oxidation applications. The prepared material showed much better activity and stability compared with commercial cobalt oxide due to its nanoparticle nature and porous structure. The catalytic performance under both dry and moisture rich conditions were tested. Detailed characterization of the materials suggested that high surface areas and the presence of surface oxygen vacancies were critical for enhanced activities. In real systems, structured catalysts such as monolithic substrates coated with a layer of active material are used instead of powder form catalysts. To evaluate the potential of our catalysts to be used in practical catalytic devices, mesoporous metal oxides (MnOx, Co3O4, CeO2) were coated on cordierite substrate by dip coating and in-situ growth and were used as low temperature diesel oxidation catalysts. The resulting materials showed promising catalytic performance. The effect of particle size, loading amount and Cu doping on the catalytic performance are discussed in detail. In the last part, mesoporous cobalt oxides were used as bifunctional catalysts for oxygen reduction and oxygen evolution reactions. If a catalyst can catalyze both reactions, it will have great potential in the application of rechargeable metal air batteries. Ni and Mn doping were introduced into the cobalt oxide material to increase the conductivity and active site population. The Ni incorporated cobalt oxide exhibited the best activity, which can be considered as a potential substituent for precious metal catalysts (Pt, Ir, Ru). Furthermore, the intrinsic structure-property relationships of the materials were established.

Design, Synthesis and Characterization of Transition Metal Oxide/sulfide-based Catalysts for Environmental and Energy Applications

Design, Synthesis and Characterization of Transition Metal Oxide/sulfide-based Catalysts for Environmental and Energy Applications
Author: Ran Miao
Publisher:
Total Pages:
Release: 2017
Genre: Electronic dissertations
ISBN:

Download Design, Synthesis and Characterization of Transition Metal Oxide/sulfide-based Catalysts for Environmental and Energy Applications Book in PDF, Epub and Kindle

In this thesis, I will focus on the synthesis of transition metal oxide/sulfide-based composite materials for different types of environmental and sustainable energy applications under ambient conditions. Controlled synthesis of these catalysts with unique crystalline structures, physical, and chemical properties will be carried out to achieve an improved catalytic activity. The correlations between the material structure and catalytic activity will be investigated by various characterization techniques. Finally, the catalytic activities for the resulting materials will be evaluated for environmental friendly photocatalytic dye degradation and electrochemical water splitting reaction, respectively.

Synthesis and Characterization of Transition Metal Oxide/Hydroxide-Based Functional Materials for Environmental and Energy Applications

Synthesis and Characterization of Transition Metal Oxide/Hydroxide-Based Functional Materials for Environmental and Energy Applications
Author: Junkai He
Publisher:
Total Pages:
Release: 2019
Genre: Electronic dissertations
ISBN:

Download Synthesis and Characterization of Transition Metal Oxide/Hydroxide-Based Functional Materials for Environmental and Energy Applications Book in PDF, Epub and Kindle

In this thesis, transition metal oxide/hydroxide-based functional nanomaterials with specific structures and properties are developed and characterized for targeting applications in environmental pollution abatement and energy conversion and storage. In the first part, graphene supported Co3O4 composite is synthesized in one-step using a facile microwave-assisted method. Graphene serves as the substrate, providing high surface area, good conductivity, and good mechanical and chemical durability. The wide pore size distribution, synergistic effect, and high surface area of the composite are found to contribute to the high performance of lithium-ion batteries. In the second part, we focused on the synthesis of a series of heterogeneous electrocatalysts based on graphene coupled mixed-metal (oxy)hydroxides containing specific concentrations of nickel, cobalt, and iron to investigate the influence of metal composition on the structure, properties, and activities for the oxygen evolution reaction (OER). Characterization results indicate iron incorporation induced structural disorder, ultra-small nanosheets, and high surface area of metal (oxy)hydroxides. In addition, the trend in Tafel slopes is related to the abundance of surface adsorbed hydroxyl groups. Density functional theory (DFT) calculations demonstrate electronic structure and free energy change of ternary metal oxyhydroxide enhance the energetics for OER electrocatalysis. The optimized ternary metal oxyhydroxide exhibits superior OER electrocatalytic activity than the state-of-the-art IrO2 catalyst. In the third part, we further developed unique mesoporous NiO/MnO2 in one step using modified UCT (University of Connecticut) methods. Both the OER and the oxygen reduction reaction (ORR) electrocatalytic activities and stabilities in alkaline media are promoted after further coating with polyaniline (PANI). Many factors are found to contribute to the improved catalytic activity, for example, accessible mesoporous structure, high surface area, core-shell structure, and good electrical conductivity. Beside the development of nanomaterials for renewable energy, we also created novel catalysts for environmental pollution abatement. Last but not least, a series of manganese oxide-based core-shell nanoarrays are integrated on the cordierite monolithic substrates. Different manganese-cobalt oxide core-shell nanoarrays are further evaluated due to the high activity for CO oxidation. This fast, cost-effective, and scalable method will provide a new route for synthesizing efficient core-shell nanoarray monolithic catalysts for low temperature catalysis.

Oxide Free Nanomaterials for Energy Storage and Conversion Applications

Oxide Free Nanomaterials for Energy Storage and Conversion Applications
Author: Prabhakarn Arunachalam
Publisher: Elsevier
Total Pages: 494
Release: 2021-12-01
Genre: Technology & Engineering
ISBN: 0128242248

Download Oxide Free Nanomaterials for Energy Storage and Conversion Applications Book in PDF, Epub and Kindle

Oxide Free Nanomaterials for Energy Storage and Conversion Applications covers in depth topics on non-oxide nanomaterials involving transition metal nitrides, carbides, selenides, phosphides, oxynitrides based electrodes, & other non-oxide groups. The current application of nanostructured nonoxides involves their major usage in energy storage and conversion devices variety of applications such as supercapacitor, batteries, dye-sensitized solar cells and hydrogen production applications. The current application of energy storage devices involves their usage of nanostructured non-oxide materials with improved energy and power densities. In this book readers will discover the major advancements in this field during the past decades. The various techniques used to prepare environmentally friendly nanostructured non-oxide materials, their structural and morphological characterization, their improved mechanical and material properties, and finally, current applications and future impacts of these materials are discussed. While planning and fabricating non-oxide materials, the readers must be concern over that they ought to be abundant, cost-efficient and environment-friendly for clean innovation and conceivably be of use in an expansive choice of utilization. The book gives detailed literature on the development of nanostructured non-oxides, their use as energy related devices and their present trend in the industry and market. This book also emphasis on the latest advancement about application of these noble non-oxide based materials for photocatalytic water-splitting. Recent progress on various kinds of both photocatalytic and electrocatalytic nanomaterials is reviewed, and essential aspects which govern catalytic behaviours and the corresponding stability are discussed. The book will give an updated literature on the synthesis, potential applications and future of nanostructured non-oxides in energy related applications. This book is highly useful to researchers working in the field with diversified backgrounds are expected to making the chapter truly interdisciplinary in nature. The contents in the book will emphasize the recent advances in interdisciplinary research on processing, morphology, structure and properties of nanostructured non-materials and their applications in energy applications such as supercapacitors, batteries, solar cells, electrochemical water splitting and other energy applications. Thus, nanotechnology researchers, scientists and experts need to have update of the growing trends and applications in the field of science and technology. Further, the postgraduate students, scientists, researchers and technologists are need to buy this book. Offers a comprehensive coverage of the nanostructured non-oxide materials and their potential energy applications Examines the properties of nanostructured non-oxide materials that make them so adaptable Explores the mechanisms by which nanoparticles interact with each other, showing how these can be used for industrial applications Shows the how nanostructured non-oxide materials are used in a wide range of industry sectors, containing energy production and storage

Metal Oxide Catalysis, 2 Volume Set

Metal Oxide Catalysis, 2 Volume Set
Author: S. David Jackson
Publisher: John Wiley & Sons
Total Pages: 916
Release: 2008-11-24
Genre: Science
ISBN: 9783527318155

Download Metal Oxide Catalysis, 2 Volume Set Book in PDF, Epub and Kindle

With its two-volume structure, this handbook and ready reference allows for comprehensive coverage of both characterization and applications, while uniform editing throughout ensures that the structure remains consistent. The result is an up-to-date review of metal oxides in catalysis. The first volume covers a range of techniques that are used to characterize oxides, with each chapter written by an expert in the field. Volume 2 goes on to cover the use of metal oxides in catalytic reactions. For all chemists and engineers working in the field of heterogeneous catalysis.

Carbon-Based Nanomaterials for Energy Conversion and Storage

Carbon-Based Nanomaterials for Energy Conversion and Storage
Author: Jia-Nan Zhang
Publisher: Springer Nature
Total Pages: 288
Release: 2022-08-26
Genre: Technology & Engineering
ISBN: 9811946256

Download Carbon-Based Nanomaterials for Energy Conversion and Storage Book in PDF, Epub and Kindle

This book systematically summarizes the advanced development of carbon-based nanomaterials for electrochemical catalysis, and it is comprised of four sections. The first section discusses about the fundamental synthesis, characterization techniques, and catalytic effects on the energy conversion and storage mechanism. The second section elaborately reviews various types of electrocatalytic reactions on carbon-based materials and their performance. The third section focuses on batteries about carbon-based materials with different storage mechanism. And the last one, the following enlightenment in terms of theoretical development and experimental research is provided to the general readers: 1) Precise design and construction of local atomic and electronic structures at the interface of catalysts; 2) Selective activation and directed conversion of carbon-based energy-carrying molecules at the interface; 3) Interaction mechanism and regulation of catalyst solid surface interface properties under environment and external field. This book will be useful for researchers and students who are interested in carbon-based nanomaterials, electrochemical catalysts and energy storage.