Synthesis and Application of Colloidal Substrates for In-solution Surface Enhanced Raman Scattering

Synthesis and Application of Colloidal Substrates for In-solution Surface Enhanced Raman Scattering
Author: Casey John Rusin
Publisher:
Total Pages: 283
Release: 2020
Genre: Colloids
ISBN:

Download Synthesis and Application of Colloidal Substrates for In-solution Surface Enhanced Raman Scattering Book in PDF, Epub and Kindle

Surface-enhanced Raman scattering (SERS) has evolved into a powerful analytical measurement technique with the potential for single molecule detection. The technological advancement of handheld Raman instrumentation is powering the development of SERS applications in a variety of industries. Moreover, it is driving the movement from laboratory-based analyses to on-site/remote analyses. As a result, a main research component from this movement is to develop compatible SERS substrates. While the market is dominated by solid-based substrates, solution-based substrates do offer some benefits. These could include low production costs, high scalability, competitive reproducibility and shorter analysis times. The primary focus of the work in this thesis is to develop solution-based SERS substrates and explore their usage for in-solution measurements. This work highlights the development of three different types of solution-based substrates. The first substrate involves the synthesis and optimization of gold nanostars as a colloidal SERS substrate. The SERS performance is investigated and optimized using different Good's buffers, examining the buffer to gold salt concentration ratio and the use of an aggregating agent. In short, the results indicated that gold nanostars with smaller branches provided larger enhancement than those with larger branches, and this has been attributed to the Raman probe surface coverage on the nanostars rather than an electromagnetic effect. A SERS assay is also developed to quantitate methimazole in urine using a handheld Raman spectrometer. The second and third solution-based substrates are metal decorated cellulose nanofibers, also known as plasmonic cellulose nanofibers. These chapters focus on the growth of silver and gold nanoparticles onto oxidized cellulose nanofibers, and are used as a water dispersible substrate. In the development of plasmonic cellulose nanofibers, the cellulose nanofibers have two important roles: (1) to act as a dispersant in water and (2) act as a support for metallic nanoparticles. For both substrates, centrifugation played a key role in producing significant signal enhancement. Cellulose nanofibers decorated with silver nanoparticles were used for in-solution measurements of malachite green, while cellulose nanofibers decorated with gold nanoparticles were used for in-solution measurements of methimazole. Moreover, an assay is developed to quantitate methimazole in synthetic urine with cellulose nanofibers decorated with gold nanoparticles. Measurements using plasmonic cellulose nanofibers are taken with a Raman microscope, however, examples are shown to highlight the capability of remote analysis by coupling the substrates with a handheld Raman spectrometer. This work concludes with a comparative study between solid- and solution-based substrates. Using cellulose nanofibers decorated with gold nanoparticles, membrane- and glass- based SERS substrate are developed. This work discusses the benefits and challenges of solid- and solution-based substrates in terms of substrate development, measurement versatility and reproducibility. The primary contribution of this work is the development of multiple solution-based SERS substrates for in-solution measurements.

Surface-Enhanced Vibrational Spectroscopy

Surface-Enhanced Vibrational Spectroscopy
Author: Ricardo Aroca
Publisher: John Wiley & Sons
Total Pages: 260
Release: 2006-05-01
Genre: Science
ISBN: 9780470035658

Download Surface-Enhanced Vibrational Spectroscopy Book in PDF, Epub and Kindle

Surface Enhanced Vibrational Spectroscopy (SEVS) has reached maturity as an analytical technique, but until now there has been no single work that describes the theory and experiments of SEVS. This book combines the two important techniques of surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) into one text that serves as the definitive resource on SEVS. Discusses both the theory and the applications of SEVS and provides an up-to-date study of the state of the art Offers interpretations of SEVS spectra for practicing analysts Discusses interpretation of SEVS spectra, which can often be very different to the non-enhanced spectrum - aids the practicing analyst

Surface-Enhanced Raman Scattering

Surface-Enhanced Raman Scattering
Author: Zhong-Qun Tian
Publisher: John Wiley & Sons Incorporated
Total Pages: 400
Release: 2010-06-14
Genre: Science
ISBN: 9780470068083

Download Surface-Enhanced Raman Scattering Book in PDF, Epub and Kindle

Surface-Enhanced Raman Spectroscopy: Principles, Experiments, and Applications is a comprehensive, up to date, and balanced treatment of the theoretical and practical aspects of Surface-Enhanced Raman Scattering (SERS), a useful branch of spectroscopy for several areas of science. This book describes the basic principles of SERS, including SERS mechanisms, performing SERS measurements, and interpreting data. Also emphasized are applications in electrochemistry; catalysis; surface processing and corrosion; Self-Assemble-Layer and L-B Films; polymer science; biology; medicine and drug analysis; sensors; fuel cells; forensics; and archaeology. It is an essential guide for student and professional analytical chemists.

Principles of Surface-Enhanced Raman Spectroscopy

Principles of Surface-Enhanced Raman Spectroscopy
Author: Eric Le Ru
Publisher: Elsevier
Total Pages: 688
Release: 2008-11-17
Genre: Science
ISBN: 0080931553

Download Principles of Surface-Enhanced Raman Spectroscopy Book in PDF, Epub and Kindle

SERS was discovered in the 1970s and has since grown enormously in breadth, depth, and understanding. One of the major characteristics of SERS is its interdisciplinary nature: it lies at the boundary between physics, chemistry, colloid science, plasmonics, nanotechnology, and biology. By their very nature, it is impossible to find a textbook that will summarize the principles needed for SERS of these rather dissimilar and disconnected topics. Although a basic understanding of these topics is necessary for research projects in SERS with all its many aspects and applications, they are seldom touched upon as a coherent unit during most undergraduate studies in physics or chemistry. This book intends to fill this existing gap in the literature. It provides an overview of the underlying principles of SERS, from the fundamental understanding of the effect to its potential applications. It is aimed primarily at newcomers to the field, graduate students, researchers or scientists, attracted by the many applications of SERS and plasmonics or its basic science. The emphasis is on concepts and background material for SERS, such as Raman spectroscopy, the physics of plasmons, or colloid science, all of them introduced within the context of SERS, and from where the more specialized literature can be followed. Represents one of very few books fully dedicated to the topic of surface-enhanced Raman spectroscopy (SERS) Gives a comprehensive summary of the underlying physical concepts around SERS Provides a detailed analysis of plasmons and plasmonics

Silver Dendrite Based Three-dimensional Surface Enhanced Raman Scattering (SERS) Substrates

Silver Dendrite Based Three-dimensional Surface Enhanced Raman Scattering (SERS) Substrates
Author: Sandesh Rajkumar Shelke
Publisher:
Total Pages: 77
Release: 2016
Genre:
ISBN:

Download Silver Dendrite Based Three-dimensional Surface Enhanced Raman Scattering (SERS) Substrates Book in PDF, Epub and Kindle

Three-dimensional (3D) hierarchical nanostructures have been considered as one of the most promising surface-enhanced Raman spectroscopy (SERS) substrates because it provides high-density hotspots along the three-dimension directions and high surface areas. In this thesis, we report the synthesis process to develop 3D SERS substrates in thin wall quartz capillary tube on Cu wire. These 3D SERS substrates consist of Ag dendrite, Au-Ag and Pd-Ag bimetallic nanostructures which was synthesized by employing simple galvanic replacement reactions (GRR). In this synthesis process Cu wire which is used as substrate was inserted in the thin walled quartz capillary tube and then AgNO3 was injected into the tube to form Ag dendrite on the Cu wire substrate. This pre-prepared dendrite was used to prepare bimetallic nanostructures of Au-Ag and Pd-Ag by injecting chlorauric acid (HAuCl4) and palladium chloride (PdCl4) into the tube, respectively. The GRR process leads to the replacement of Ag atoms by Au and Pd which causes corresponding morphological change of the underlying Ag dendrite. The GRR leaves pores where Ag is depleted. The morphological and compositional changes caused by GRR was analyzed by using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Two close metallic surfaces can enhance the electromagnetic (EM) field around molecules absorbed between them, which leads to extremely high SERS enhancement. These 3D SERS substrates was tested in detection of aqueous 4-Mercaptobenzoic Acid (4-MBA) solution with various concentrations. The fabricated substrate was employed to detect the 4-MBA solution to the detection limit down to 10-13 M and exhibits highenhanced performance. The results indicated that these 3D unique bimetallic nanostructures can amplify Raman signals for extremely low concentration molecules as compared to the Ag dendrite nanostructure substrates.

Metal Nanoparticles and Clusters

Metal Nanoparticles and Clusters
Author: Francis Leonard Deepak
Publisher: Springer
Total Pages: 431
Release: 2017-11-17
Genre: Technology & Engineering
ISBN: 3319680536

Download Metal Nanoparticles and Clusters Book in PDF, Epub and Kindle

​This book covers the continually expanding field of metal nanoparticles and clusters, in particular their size-dependent properties and quantum phenomena. The approaches to the organization of atoms that form clusters and nanoparticles have been advancing rapidly in recent times. These advancements are described through a combination of experimental and computational approaches and are covered in detail by the authors. Recent highlights of the various emerging properties and applications ranging from plasmonics to catalysis are showcased.