Electronic Properties of Semiconductor Interfaces

Electronic Properties of Semiconductor Interfaces
Author: Winfried Mönch
Publisher: Springer Science & Business Media
Total Pages: 269
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 3662069458

Download Electronic Properties of Semiconductor Interfaces Book in PDF, Epub and Kindle

Using the continuum of interface-induced gap states (IFIGS) as a unifying theme, Mönch explains the band-structure lineup at all types of semiconductor interfaces. These intrinsic IFIGS are the wave-function tails of electron states, which overlap a semiconductor band-gap exactly at the interface, so they originate from the quantum-mechanical tunnel effect. He shows that a more chemical view relates the IFIGS to the partial ionic character of the covalent interface-bonds and that the charge transfer across the interface may be modeled by generalizing Pauling?s electronegativity concept. The IFIGS-and-electronegativity theory is used to quantitatively explain the barrier heights and band offsets of well-characterized Schottky contacts and semiconductor heterostructures, respectively.

Semiconductor Surfaces and Interfaces

Semiconductor Surfaces and Interfaces
Author: Winfried Mönch
Publisher: Springer Science & Business Media
Total Pages: 548
Release: 2013-03-09
Genre: Science
ISBN: 3662044595

Download Semiconductor Surfaces and Interfaces Book in PDF, Epub and Kindle

This third edition has been thoroughly revised and updated. In particular it now includes an extensive discussion of the band lineup at semiconductor interfaces. The unifying concept is the continuum of interface-induced gap states.

Surfaces and Interfaces of Electronic Materials

Surfaces and Interfaces of Electronic Materials
Author: Leonard J. Brillson
Publisher: John Wiley & Sons
Total Pages: 589
Release: 2012-06-26
Genre: Technology & Engineering
ISBN: 3527665722

Download Surfaces and Interfaces of Electronic Materials Book in PDF, Epub and Kindle

An advanced level textbook covering geometric, chemical, and electronic structure of electronic materials, and their applications to devices based on semiconductor surfaces, metal-semiconductor interfaces, and semiconductor heterojunctions. Starting with the fundamentals of electrical measurements on semiconductor interfaces, it then describes the importance of controlling macroscopic electrical properties by atomic-scale techniques. Subsequent chapters present the wide range of surface and interface techniques available to characterize electronic, optical, chemical, and structural properties of electronic materials, including semiconductors, insulators, nanostructures, and organics. The essential physics and chemistry underlying each technique is described in sufficient depth with references to the most authoritative sources for more exhaustive discussions, while numerous examples are provided throughout to illustrate the applications of each technique. With its general reading lists, extensive citations to the text, and problem sets appended to all chapters, this is ideal for students of electrical engineering, physics and materials science. It equally serves as a reference for physicists, material science and electrical and electronic engineers involved in surface and interface science, semiconductor processing, and device modeling and design. This is a coproduction of Wiley and IEEE * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/

Semiconductor Interfaces: Formation and Properties

Semiconductor Interfaces: Formation and Properties
Author: Guy LeLay
Publisher: Springer Science & Business Media
Total Pages: 399
Release: 2012-12-06
Genre: Science
ISBN: 3642729673

Download Semiconductor Interfaces: Formation and Properties Book in PDF, Epub and Kindle

The trend towards miniaturisation of microelectronic devices and the search for exotic new optoelectronic devices based on multilayers confer a crucial role on semiconductor interfaces. Great advances have recently been achieved in the elaboration of new thin film materials and in the characterization of their interfacial properties, down to the atomic scale, thanks to the development of sophisticated new techniques. This book is a collection of lectures that were given at the International Winter School on Semiconductor Interfaces: Formation and Properties held at the Centre de Physique des Rouches from 24 February to 6 March, 1987. The aim of this Winter School was to present a comprehensive review of this field, in particular of the materials and methods, and to formulate recom mendations for future research. The following topics are treated: (i) Interface formation. The key aspects of molecular beam epitaxy are emphasized, as well as the fabrication of artificially layered structures, strained layer superlattices and the tailoring of abrupt doping profiles. (ii) Fine characterization down to the atomic scale using recently devel oped, powerful techniques such as scanning tunneling microscopy, high reso lution transmission electron microscopy, glancing incidence x-ray diffraction, x-ray standing waves, surface extended x-ray absorption fine structure and surface extended energy-loss fine structure. (iii) Specific physical properties of the interfaces and their prospective applications in devices. We wish to thank warmly all the lecturers and participants, as well as the organizing committee, who made this Winter School a success.

Electronic Structure of Metal-Semiconductor Contacts

Electronic Structure of Metal-Semiconductor Contacts
Author: Winfried Mönch
Publisher: Springer
Total Pages: 300
Release: 1990-11-30
Genre: Technology & Engineering
ISBN: 9780792308546

Download Electronic Structure of Metal-Semiconductor Contacts Book in PDF, Epub and Kindle

Interface and surface science have been important in the development of semicon ductor physics right from the beginning on. Modern device concepts are not only based on p-n junctions, which are interfaces between regions containing different types of dopants, but take advantage of the electronic properties of semiconductor insulator interfaces, heterojunctions between distinct semiconductors, and metal semiconductor contacts. The latter ones stood almost at the very beginning of semi conductor physics at the end of the last century. The rectifying properties of metal-semiconductor contacts were first described by Braun in 1874. A physically correct explanation of unilateral conduction, as this deviation from Ohm's law was called, could not be given at that time. A prerequisite was Wilson's quantum theory of electronic semi-conductors which he published in 1931. A few years later, in 1938, Schottky finally explained the rectification at metal-semiconductor contacts by a space-