Stochastic Geometry for Modeling, Analysis and Design of Future Wireless Networks

Stochastic Geometry for Modeling, Analysis and Design of Future Wireless Networks
Author: Jing Guo
Publisher:
Total Pages: 0
Release: 2016
Genre:
ISBN:

Download Stochastic Geometry for Modeling, Analysis and Design of Future Wireless Networks Book in PDF, Epub and Kindle

This thesis focuses on the modeling, analysis and design of future wireless networks with smart devices, i.e., devices with intelligence and ability to communicate with one another with/without the control of base stations (BSs). Using stochastic geometry, we develop realistic yet tractable frameworks to model and analyze the performance of such networks, while incorporating the intelligence features of smart devices. In the first half of the thesis, we develop stochastic geometry tools to study arbitrarily shaped network regions. Current techniques in the literature assume the network regions to be infinite, while practical network regions tend to be arbitrary. Two well-known networks are considered, where devices have the ability to: (i) communicate with others without the control of BSs (i.e., ad-hoc networks), and (ii) opportunistically access spectrum (i.e., cognitive networks). First, we propose a general algorithm to derive the distribution of the distance between the reference node and a random node inside an arbitrarily shaped ad-hoc network region, which helps to compute the outage probability. We then study the impact of boundary effects and show that the outage probability in infinite regions may not be a meaningful bound for arbitrarily shaped regions. By extending the developed techniques, we further analyze the performance of underlay cognitive networks, where different secondary users (SUs) activity protocols are employed to limit the interference at a primary user. Leveraging the information exchange among SUs, we propose a cooperation-based protocol. We show that, in the short-term sensing scenario, this protocol improves the network's performance compared to the existing threshold-based protocol. In the second half of the thesis, we study two recently emerged networks, where devices have the ability to: (i) communicate directly with nearby devices under the control of BSs (i.e., device-to-device (D2D) communication), and (ii) harvest radio frequency energy (i.e., energy harvesting networks). We first analyze the intra-cell interference in a finite cellular region underlaid with D2D communication, by incorporating a mode selection scheme to reduce the interference. We derive the outage probability at the BS and a D2D receiver, and propose a spectrum reuse ratio metric to assess the overall D2D communication performance. We demonstrate that, without impairing the performance at the BS, if the path-loss exponent on cellular link is slightly lower than that on D2D link, the spectrum reuse ratio can have negligible decrease while the average number of successful D2D transmissions increases with the increasing D2D node density. This indicates that an increasing level of D2D communication is beneficial in future networks. Then we study an ad-hoc network with simultaneous wireless information and power transfer in an infinite region, where transmitters are wirelessly charged by power beacons. We formulate the total outage probability in terms of the power and channel outage probabilities. The former incorporates a power activation threshold at transmitters, which is a key practical factor that has been largely ignored in previous work. We show that, although increasing power beacon's density or transmit power is not always beneficial for channel outage probability, it improves the overall network performance.

Stochastic Geometry for Wireless Networks

Stochastic Geometry for Wireless Networks
Author: Martin Haenggi
Publisher: Cambridge University Press
Total Pages: 301
Release: 2013
Genre: Computers
ISBN: 1107014697

Download Stochastic Geometry for Wireless Networks Book in PDF, Epub and Kindle

Analyse wireless network performance and improve design choices for future architectures and protocols with this rigorous introduction to stochastic geometry.

Stochastic Geometry Analysis of Cellular Networks

Stochastic Geometry Analysis of Cellular Networks
Author: Bartłomiej Błaszczyszyn
Publisher: Cambridge University Press
Total Pages: 208
Release: 2018-04-19
Genre: Technology & Engineering
ISBN: 1108340857

Download Stochastic Geometry Analysis of Cellular Networks Book in PDF, Epub and Kindle

Achieve faster and more efficient network design and optimization with this comprehensive guide. Some of the most prominent researchers in the field explain the very latest analytic techniques and results from stochastic geometry for modelling the signal-to-interference-plus-noise ratio (SINR) distribution in heterogeneous cellular networks. This book will help readers to understand the effects of combining different system deployment parameters on key performance indicators such as coverage and capacity, enabling the efficient allocation of simulation resources. In addition to covering results for network models based on the Poisson point process, this book presents recent results for when non-Poisson base station configurations appear Poisson, due to random propagation effects such as fading and shadowing, as well as non-Poisson models for base station configurations, with a focus on determinantal point processes and tractable approximation methods. Theoretical results are illustrated with practical Long-Term Evolution (LTE) applications and compared with real-world deployment results.

Stochastic Geometry Analysis of Multi-Antenna Wireless Networks

Stochastic Geometry Analysis of Multi-Antenna Wireless Networks
Author: Xianghao Yu
Publisher: Springer
Total Pages: 178
Release: 2019-03-27
Genre: Computers
ISBN: 981135880X

Download Stochastic Geometry Analysis of Multi-Antenna Wireless Networks Book in PDF, Epub and Kindle

This book presents a unified framework for the tractable analysis of large-scale, multi-antenna wireless networks using stochastic geometry. This mathematical analysis is essential for assessing and understanding the performance of complicated multi-antenna networks, which are one of the foundations of 5G and beyond networks to meet the ever-increasing demands for network capacity. Describing the salient properties of the framework, which makes the analysis of multi-antenna networks comparable to that of their single-antenna counterparts, the book discusses effective design approaches that do not require complex system-level simulations. It also includes various application examples with different multi-antenna network models to illustrate the framework’s effectiveness.

Stochastic Geometry and Wireless Networks

Stochastic Geometry and Wireless Networks
Author: François Baccelli
Publisher: Now Publishers Inc
Total Pages: 224
Release: 2009
Genre: Computers
ISBN: 160198264X

Download Stochastic Geometry and Wireless Networks Book in PDF, Epub and Kindle

This volume bears on wireless network modeling and performance analysis. The aim is to show how stochastic geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context. It first focuses on medium access control mechanisms used in ad hoc networks and in cellular networks. It then discusses the use of stochastic geometry for the quantitative analysis of routing algorithms in mobile ad hoc networks. The appendix also contains a concise summary of wireless communication principles and of the network architectures considered in the two volumes.

Stochastic Geometry and Wireless Networks: Applications

Stochastic Geometry and Wireless Networks: Applications
Author: François Baccelli
Publisher: Now Publishers Inc
Total Pages: 336
Release: 2010-02
Genre: Technology & Engineering
ISBN: 9781601982667

Download Stochastic Geometry and Wireless Networks: Applications Book in PDF, Epub and Kindle

This volume bears on wireless network modeling and performance analysis. The aim is to show how stochastic geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context. It first focuses on medium access control mechanisms used in ad hoc networks and in cellular networks. It then discusses the use of stochastic geometry for the quantitative analysis of routing algorithms in mobile ad hoc networks. The appendix also contains a concise summary of wireless communication principles and of the network architectures considered in the two volumes.

Modeling and Analyzing Wireless Networks Using Stochastic Geometry

Modeling and Analyzing Wireless Networks Using Stochastic Geometry
Author: Junse Lee
Publisher:
Total Pages: 450
Release: 2018
Genre:
ISBN:

Download Modeling and Analyzing Wireless Networks Using Stochastic Geometry Book in PDF, Epub and Kindle

Over the past decade, stochastic geometric models, and most notably the planar Poisson point process (PPP) model, have become popular for the analysis of spectral efficiency in wireless networks, in both the D2D and the cellular contexts [1]. By modeling base station (BS) and user locations as spatial point processes, stochastic geometry has recently been recognized as a tractable and efficient analytical tool to quantify key performance metrics. This tool provides a natural way of defining and computing macroscopic properties of multiuser information theory. These properties are obtained by averaging over all node patterns found in a large random network of the Euclidean plane. For example, some key performance metrics such as signal to interference and noise ratio and data rate depend on the network geometric configurations. This tool has thus been widely adopted for analyzing the network performance and broadening network design. This thesis proposes new models to represent several new scenarios. Three main scenarios are considered: 3-D inbuilding networks, MIMO adhoc networks, and multihop communication under mmWave networks. To do so, mathematical tools such as Poisson point processes, Poisson line processes, Boolean models and Poisson bipolar models are used. Each model is 1) generative in that it has a clear physical interpretation, 2) leads to explicit analytical representations of important wireless performance metrics, and 3) highly parametric, with parameters expressing the geometric characteristic of the elements of networks. Physical interpretations from these models are quite different from previous results. The core of this thesis is focused on the effects of correlated shadowing. Shadowing is the effect that the received signal power fluctuates due to objects obstructing the propagation path. By introducing an independent shadowing term over links, it is possible to model the effect of shadow fading. Most previous papers analyzing urban networks assume that shadowing fields are independent over links. With this assumption, it is possible to derive simple closed-form expressions of important network performance metrics. However, this assumption cannot capture that shadowing fields are spatially correlated. This thesis goes beyond the independent shadowing approximation and analyzes the effects of correlated shadowing on various performance metrics

Protocol Design and Analysis for Cooperative Wireless Networks

Protocol Design and Analysis for Cooperative Wireless Networks
Author: Wei Song
Publisher: Springer
Total Pages: 135
Release: 2016-11-03
Genre: Technology & Engineering
ISBN: 3319477269

Download Protocol Design and Analysis for Cooperative Wireless Networks Book in PDF, Epub and Kindle

This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate the analysis and examine the performance under various conditions. The last section of this book reveals several potential directions for the research on cooperative wireless networks that deserve future exploration. Researchers, professionals, engineers, and consultants in wireless communication and mobile networks will find this book valuable. It is also helpful for technical staff in mobile network operations, wireless equipment manufacturers, wireless communication standardization bodies, and governmental regulation agencies.

New Results on Stochastic Geometry Modeling of Cellular Networks

New Results on Stochastic Geometry Modeling of Cellular Networks
Author: Wei Lu
Publisher:
Total Pages: 0
Release: 2015
Genre:
ISBN:

Download New Results on Stochastic Geometry Modeling of Cellular Networks Book in PDF, Epub and Kindle

The increasing heterogeneity and irregular deployment of the emerging wireless networks give enormous challenges to the conventional hexagonal model for abstracting the geographical locations of wireless transmission nodes. Against this backdrop, a new network paradigm by modeling the wireless nodes as a Poisson Point Process (PPP), leveraging on the mathematical tools of stochastic geometry for tractable mathematical analysis, has been proposed with the capability of fairly accurately estimating the performance of practical cellular networks. This dissertation investigated the mathematical tractability of the PPP-based approach by proposing new mathematical methodologies, fair approximations incorporating practical channel propagation models. First, a new mathematical framework, which is referred to as an Equivalent-in-Distribution (EiD)-based approach, has been proposed for computing exact error probability of cellular networks based on random spatial networks. The proposed approach is easy to compute and is shown to be applicable to a bunch of MIMO setups where the modulation techniques and signal recovery techniques are explicitly considered. Second, the performance of relay-aided cooperative cellular networks, where the relay nodes, the base stations, and the mobile terminals are modeled according to three independent PPPs, has been analyzed by assuming flexible cell association criteria. It is shown from the mathematical framework that the performance highly depends on the path-loss exponents of one-hop and two-hop links, and the relays provide negligible gains on the performance if the system is not adequately designed. Third, the PPP modeling of cellular networks with unified signal attenuation model is generalized by taking into account the effect of line-of-sight (LOS) and non-line-of-sight (NLOS) channel propagation. A tractable yet accurate link state model has been proposed to estimate other models available in the literature. It is shown that an optimal density for the BSs deployment exists when the LOS/NLOS links are classified in saturate load cellular networks. In addition, the Monte Carlo simulation results of the real BSs deployments with empirical building blockages are compared with those with PPP distributed BSs with the proposed link state approximation at the end of this dissertation as supplementary material. In general, a good matching is observed.