Stochastic Finite Elements: A Spectral Approach

Stochastic Finite Elements: A Spectral Approach
Author: Roger G. Ghanem
Publisher: Springer Science & Business Media
Total Pages: 217
Release: 2012-12-06
Genre: Science
ISBN: 1461230942

Download Stochastic Finite Elements: A Spectral Approach Book in PDF, Epub and Kindle

This monograph considers engineering systems with random parame ters. Its context, format, and timing are correlated with the intention of accelerating the evolution of the challenging field of Stochastic Finite Elements. The random system parameters are modeled as second order stochastic processes defined by their mean and covari ance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used' to represent these processes in terms of a countable set of un correlated random vari ables. Thus, the problem is cast in a finite dimensional setting. Then, various spectral approximations for the stochastic response of the system are obtained based on different criteria. Implementing the concept of Generalized Inverse as defined by the Neumann Ex pansion, leads to an explicit expression for the response process as a multivariate polynomial functional of a set of un correlated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral repre sentation in terms of the Polynomial Chaoses is identified. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials.

Stochastic Finite Elements

Stochastic Finite Elements
Author: Roger Ghanem
Publisher: Springer Verlag
Total Pages: 214
Release: 1991
Genre: Technology & Engineering
ISBN: 9780387974569

Download Stochastic Finite Elements Book in PDF, Epub and Kindle

A comprehensive treatment of the theories and concepts behind analyzing a class of discrete mathematical models of engineering systems whose properties and excitations can be represented as random processes. The spectral approach extends the deterministic finite element method to the space of random functions. Addressed to students and researchers in mechanical and other branches of engineering. Annotation copyrighted by Book News, Inc., Portland, OR

The Stochastic Finite Element Method

The Stochastic Finite Element Method
Author: Michael Kleiber
Publisher: Wiley
Total Pages: 336
Release: 1993-02-02
Genre: Technology & Engineering
ISBN: 9780471936268

Download The Stochastic Finite Element Method Book in PDF, Epub and Kindle

Combines two crucial techniques created to deal with complex problems of modern engineering--the finite element method and stochastic analysis. By utilizing the computationally effective finite element approach, it offers a means to obtain extremely useful insight into the way in which ever-existing structural uncertainties propagate. Includes the latest research on the topic of stochastic finite elements. Computer programs, available on request, demonstrate the theory.

Stochastic Finite Element Methods

Stochastic Finite Element Methods
Author: Vissarion Papadopoulos
Publisher: Springer
Total Pages: 151
Release: 2017-10-28
Genre: Science
ISBN: 3319645285

Download Stochastic Finite Element Methods Book in PDF, Epub and Kindle

The book provides a self-contained treatment of stochastic finite element methods. It helps the reader to establish a solid background on stochastic and reliability analysis of structural systems and enables practicing engineers to better manage the concepts of analysis and design in the presence of uncertainty. The book covers the basic topics of computational stochastic mechanics focusing on the stochastic analysis of structural systems in the framework of the finite element method. The target audience primarily comprises students in a postgraduate program specializing in structural engineering but the book may also be beneficial to practicing engineers and research experts alike.

Spectral and High Order Methods for Partial Differential Equations

Spectral and High Order Methods for Partial Differential Equations
Author: Jan S. Hesthaven
Publisher: Springer Science & Business Media
Total Pages: 507
Release: 2010-10-29
Genre: Mathematics
ISBN: 3642153372

Download Spectral and High Order Methods for Partial Differential Equations Book in PDF, Epub and Kindle

The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.

Reliability Assessment Using Stochastic Finite Element Analysis

Reliability Assessment Using Stochastic Finite Element Analysis
Author: Achintya Haldar
Publisher: John Wiley & Sons
Total Pages: 356
Release: 2000-05-22
Genre: Technology & Engineering
ISBN: 9780471369615

Download Reliability Assessment Using Stochastic Finite Element Analysis Book in PDF, Epub and Kindle

The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.

Computational Methods in Stochastic Dynamics

Computational Methods in Stochastic Dynamics
Author: Manolis Papadrakakis
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2012-10-03
Genre: Technology & Engineering
ISBN: 9400751346

Download Computational Methods in Stochastic Dynamics Book in PDF, Epub and Kindle

The considerable influence of inherent uncertainties on structural behavior has led the engineering community to recognize the importance of a stochastic approach to structural problems. Issues related to uncertainty quantification and its influence on the reliability of the computational models are continuously gaining in significance. In particular, the problems of dynamic response analysis and reliability assessment of structures with uncertain system and excitation parameters have been the subject of continuous research over the last two decades as a result of the increasing availability of powerful computing resources and technology. This book is a follow up of a previous book with the same subject (ISBN 978-90-481-9986-0) and focuses on advanced computational methods and software tools which can highly assist in tackling complex problems in stochastic dynamic/seismic analysis and design of structures. The selected chapters are authored by some of the most active scholars in their respective areas and represent some of the most recent developments in this field. The book consists of 21 chapters which can be grouped into several thematic topics including dynamic analysis of stochastic systems, reliability-based design, structural control and health monitoring, model updating, system identification, wave propagation in random media, seismic fragility analysis and damage assessment. This edited book is primarily intended for researchers and post-graduate students who are familiar with the fundamentals and wish to study or to advance the state of the art on a particular topic in the field of computational stochastic structural dynamics. Nevertheless, practicing engineers could benefit as well from it as most code provisions tend to incorporate probabilistic concepts in the analysis and design of structures.

Introduction to Finite and Spectral Element Methods Using MATLAB

Introduction to Finite and Spectral Element Methods Using MATLAB
Author: Constantine Pozrikidis
Publisher: CRC Press
Total Pages: 823
Release: 2014-06-20
Genre: Mathematics
ISBN: 1482209160

Download Introduction to Finite and Spectral Element Methods Using MATLAB Book in PDF, Epub and Kindle

Incorporating new topics and original material, Introduction to Finite and Spectral Element Methods Using MATLAB, Second Edition enables readers to quickly understand the theoretical foundation and practical implementation of the finite element method and its companion spectral element method. Readers gain hands-on computational experience by using

IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties

IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties
Author: Alexander K. Belyaev
Publisher: Springer Science & Business Media
Total Pages: 471
Release: 2010-12-02
Genre: Technology & Engineering
ISBN: 9400702892

Download IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties Book in PDF, Epub and Kindle

The Symposium was aimed at the theoretical and numerical problems involved in modelling the dynamic response of structures which have uncertain properties due to variability in the manufacturing and assembly process, with automotive and aerospace structures forming prime examples. It is well known that the difficulty in predicting the response statistics of such structures is immense, due to the complexity of the structure, the large number of variables which might be uncertain, and the inevitable lack of data regarding the statistical distribution of these variables. The Symposium participants presented the latest thinking in this very active research area, and novel techniques were presented covering the full frequency spectrum of low, mid, and high frequency vibration problems. It was demonstrated that for high frequency vibrations the response statistics can saturate and become independent of the detailed distribution of the uncertain system parameters. A number of presentations exploited this physical behaviour by using and extending methods originally developed in both phenomenological thermodynamics and in the fields of quantum mechanics and random matrix theory. For low frequency vibrations a number of presentations focussed on parametric uncertainty modelling (for example, probabilistic models, interval analysis, and fuzzy descriptions) and on methods of propagating this uncertainty through a large dynamic model in an effi cient way. At mid frequencies the problem is mixed, and various hybrid schemes were proposed. It is clear that a comprehensive solution to the problem of predicting the vibration response of uncertain structures across the whole frequency range requires expertise across a wide range of areas (including probabilistic and non-probabilistic methods, interval and info-gap analysis, statistical energy analysis, statistical thermodynamics, random wave approaches, and large scale computations) and this IUTAM symposium presented a unique opportunity to bring together outstanding international experts in these fields.