Spectral Theory of Nonautonomous Dynamical Systems and Applications

Spectral Theory of Nonautonomous Dynamical Systems and Applications
Author: Thai Son Doan
Publisher: Springer
Total Pages: 0
Release: 2025-02-10
Genre: Mathematics
ISBN: 9789819755196

Download Spectral Theory of Nonautonomous Dynamical Systems and Applications Book in PDF, Epub and Kindle

The main challenge in the study of nonautonomous phenomena is to understand the very complicated dynamical behaviour both as a scientific and mathematical problem. The theory of nonautonomous dynamical systems has experienced a renewed and steadily growing interest in the last twenty years, stimulated also by synergetic effects of disciplines which have developed relatively independent for some time such as topological skew product, random dynamical systems, finite-time dynamics and control systems. The book provides new insights in many aspects of the qualitative theory of nonautonomous dynamical systems including the spectral theory, the linearization theory, the bifurcation theory. The book first introduces several important spectral theorem for nonautonomous differential equations including the Lyapunov spectrum, Sacker-Sell spectrum and finite-time spectrum. The author also establishes the smooth linearization and partial linearization for nonautonomous differential equations in application part. Then the second part recalls the multiplicative ergodic theorem for random dynamical systems and discusses several explicit formulas in computing the Lyapunov spectrum for random dynamical systems generated by linear stochastic differential equations and random difference equations with random delay. In the end, the Pitchfork bifurcation and Hopf bifurcation with additive noise are investigated in terms of change of the sign of Lyapunov exponents and loss of topological equivalence. This book might be appealing to researchers and graduate students in the field of dynamical systems, stochastic differential equations, ergodic theory.

Nonautonomous Bifurcation Theory

Nonautonomous Bifurcation Theory
Author: Vasso Anagnostopoulou
Publisher: Springer Nature
Total Pages: 159
Release: 2023-05-31
Genre: Mathematics
ISBN: 303129842X

Download Nonautonomous Bifurcation Theory Book in PDF, Epub and Kindle

Bifurcation theory is a major topic in dynamical systems theory with profound applications. However, in contrast to autonomous dynamical systems, it is not clear what a bifurcation of a nonautonomous dynamical system actually is, and so far, various different approaches to describe qualitative changes have been suggested in the literature. The aim of this book is to provide a concise survey of the area and equip the reader with suitable tools to tackle nonautonomous problems. A review, discussion and comparison of several concepts of bifurcation is provided, and these are formulated in a unified notation and illustrated by means of comprehensible examples. Additionally, certain relevant tools needed in a corresponding analysis are presented.

Nonlinear Physical Systems

Nonlinear Physical Systems
Author: Oleg N. Kirillov
Publisher: John Wiley & Sons
Total Pages: 328
Release: 2013-12-11
Genre: Mathematics
ISBN: 111857754X

Download Nonlinear Physical Systems Book in PDF, Epub and Kindle

Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems. Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics, and dissipation-induced instabilities are treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. Each chapter contains mechanical and physical examples, and the combination of advanced material and more tutorial elements makes this book attractive for both experts and non-specialists keen to expand their knowledge on modern methods and trends in stability theory. Contents 1. Surprising Instabilities of Simple Elastic Structures, Davide Bigoni, Diego Misseroni, Giovanni Noselli and Daniele Zaccaria. 2. WKB Solutions Near an Unstable Equilibrium and Applications, Jean-François Bony, Setsuro Fujiié, Thierry Ramond and Maher Zerzeri, partially supported by French ANR project NOSEVOL. 3. The Sign Exchange Bifurcation in a Family of Linear Hamiltonian Systems, Richard Cushman, Johnathan Robbins and Dimitrii Sadovskii. 4. Dissipation Effect on Local and Global Fluid-Elastic Instabilities, Olivier Doaré. 5. Tunneling, Librations and Normal Forms in a Quantum Double Well with a Magnetic Field, Sergey Yu. Dobrokhotov and Anatoly Yu. Anikin. 6. Stability of Dipole Gap Solitons in Two-Dimensional Lattice Potentials, Nir Dror and Boris A. Malomed. 7. Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation, Yasuhide Fukumoto, Makoto Hirota and Youichi Mie. 8. Determining the Stability Domain of Perturbed Four-Dimensional Systems in 1:1 Resonance, Igor Hoveijn and Oleg N. Kirillov. 9. Index Theorems for Polynomial Pencils, Richard Kollár and Radomír Bosák. 10. Investigating Stability and Finding New Solutions in Conservative Fluid Flows Through Bifurcation Approaches, Paolo Luzzatto-Fegiz and Charles H.K. Williamson. 11. Evolution Equations for Finite Amplitude Waves in Parallel Shear Flows, Sherwin A. Maslowe. 12. Continuum Hamiltonian Hopf Bifurcation I, Philip J. Morrison and George I. Hagstrom. 13. Continuum Hamiltonian Hopf Bifurcation II, George I. Hagstrom and Philip J. Morrison. 14. Energy Stability Analysis for a Hybrid Fluid-Kinetic Plasma Model, Philip J. Morrison, Emanuele Tassi and Cesare Tronci. 15. Accurate Estimates for the Exponential Decay of Semigroups with Non-Self-Adjoint Generators, Francis Nier. 16. Stability Optimization for Polynomials and Matrices, Michael L. Overton. 17. Spectral Stability of Nonlinear Waves in KdV-Type Evolution Equations, Dmitry E. Pelinovsky. 18. Unfreezing Casimir Invariants: Singular Perturbations Giving Rise to Forbidden Instabilities, Zensho Yoshida and Philip J. Morrison. About the Authors Oleg N. Kirillov has been a Research Fellow at the Magneto-Hydrodynamics Division of the Helmholtz-Zentrum Dresden-Rossendorf in Germany since 2011. His research interests include non-conservative stability problems of structural mechanics and physics, perturbation theory of non-self-adjoint boundary eigenvalue problems, magnetohydrodynamics, friction-induced oscillations, dissipation-induced instabilities and non-Hermitian problems of optics and microwave physics. Since 2013 he has served as an Associate Editor for the journal Frontiers in Mathematical Physics. Dmitry E. Pelinovsky has been Professor at McMaster University in Canada since 2000. His research profile includes work with nonlinear partial differential equations, discrete dynamical systems, spectral theory, integrable systems, and numerical analysis. He served as the guest editor of the special issue of the journals Chaos in 2005 and Applicable Analysis in 2010. He is an Associate Editor of the journal Communications in Nonlinear Science and Numerical Simulations. This book is devoted to the problems of spectral analysis, stability and bifurcations arising from the nonlinear partial differential equations of modern physics. Leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics present state-of-the-art approaches to a wide spectrum of new challenging stability problems. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics and dissipation-induced instabilities will be treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. All chapters contain mechanical and physical examples and combine both tutorial and advanced sections, making them attractive both to experts in the field and non-specialists interested in knowing more about modern methods and trends in stability theory.

Spectral Theory And Nonlinear Analysis With Applications To Spatial Ecology

Spectral Theory And Nonlinear Analysis With Applications To Spatial Ecology
Author: Santiago Cano-casanova
Publisher: World Scientific
Total Pages: 289
Release: 2005-09-29
Genre: Science
ISBN: 9814479268

Download Spectral Theory And Nonlinear Analysis With Applications To Spatial Ecology Book in PDF, Epub and Kindle

This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology.The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis — from the most abstract developments up to the most concrete applications to population dynamics and socio-biology — in an effort to fill the existing gaps between these fields.

Spectral Theory of Dynamical Systems

Spectral Theory of Dynamical Systems
Author: Mahendra Nadkarni
Publisher: Springer Nature
Total Pages: 223
Release: 2020-08-29
Genre: Mathematics
ISBN: 9811562253

Download Spectral Theory of Dynamical Systems Book in PDF, Epub and Kindle

This book discusses basic topics in the spectral theory of dynamical systems. It also includes two advanced theorems, one by H. Helson and W. Parry, and another by B. Host. Moreover, Ornstein’s family of mixing rank-one automorphisms is given with construction and proof. Systems of imprimitivity and their relevance to ergodic theory are also examined. Baire category theorems of ergodic theory, scattered in literature, are discussed in a unified way in the book. Riesz products are introduced and applied to describe the spectral types and eigenvalues of rank-one automorphisms. Lastly, the second edition includes a new chapter “Calculus of Generalized Riesz Products”, which discusses the recent work connecting generalized Riesz products, Hardy classes, Banach's problem of simple Lebesgue spectrum in ergodic theory and flat polynomials.

Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control

Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control
Author: Russell Johnson
Publisher: Springer
Total Pages: 0
Release: 2016-03-26
Genre: Mathematics
ISBN: 9783319290232

Download Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control Book in PDF, Epub and Kindle

This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hamiltonian systems of general dimension. The properties of all these objects form the basis for the study of several themes concerning linear-quadratic control problems, including the linear regulator property, the Kalman-Bucy filter, the infinite-horizon optimization problem, the nonautonomous version of the Yakubovich Frequency Theorem, and dissipativity in the Willems sense. The book will be useful for graduate students and researchers interested in nonautonomous differential equations; dynamical systems and ergodic theory; spectral theory of differential operators; and control theory.

Spectral Theory of Dynamical Systems

Spectral Theory of Dynamical Systems
Author: Nadkarni
Publisher: Birkhäuser
Total Pages: 182
Release: 2012-12-06
Genre: Mathematics
ISBN: 9783034888417

Download Spectral Theory of Dynamical Systems Book in PDF, Epub and Kindle

This book treats some basic topics in the spectral theory of dynamical systems, where by a dynamical system we mean a measure space on which a group of automorphisms acts preserving the sets of measure zero. The treatment is at a general level, but even here, two theorems which are not on the surface, one due to H. Helson and W. Parry and the other due to B. Host are presented. Moreover non singular automorphisms are considered and systems ofimprimitivity are discussed. and they are used to describe Riesz products, suitably generalised, are considered the spectral types and eigenvalues of rank one automorphisms. On the other hand topics such as spectral characterisations of various mixing conditions, which can be found in most texts on ergodic theory, and also the spectral theory of Gauss Dynamical Systems, which is very well presented in Cornfeld, Fomin, and Sinai's book on Ergodic Theory, are not treated in this book. A number of discussions and correspondence on email with El Abdalaoui El Houcein made possible the presentation of mixing rank one construction of D. S. Ornstein. Iam deeply indebted to G. R. Goodson. He has edited the book and suggested a number of corrections and improvements in both content and language.