Soil Response to Fire Frequency in the Northern Columbia Basin Sagebrush Steppe

Soil Response to Fire Frequency in the Northern Columbia Basin Sagebrush Steppe
Author: Leslie C. Nichols
Publisher:
Total Pages: 44
Release: 2020
Genre: Sagebrush steppe ecology
ISBN:

Download Soil Response to Fire Frequency in the Northern Columbia Basin Sagebrush Steppe Book in PDF, Epub and Kindle

"Fire is one of the most significant disturbances in an ecosystem, as it is capable of altering the physical, chemical, and biological properties of soil, and the fire frequency in semi-arid ecosystems is increasing. These changes can potentially alter plant-soil feedbacks that may affect post-fire recovery of the native plant and soil communities and lead to an ecosystem state change. However, there is much uncertainty about the magnitude of change as soils are exposed to more fires, because soil recovery and changes in fire severity following a first fire mediate the impact of successive fires on soil properties. To improve understanding of fire frequency effects on the soil ecology of the northern Columbia Basin sagebrush steppe ecosystem, this study assessed the physical, chemical and biological properties of soil that are critical to plant communities (e.g. soil pH, C and N, respiration and extracellular enzyme activity) from four different fire frequencies (unburned, burned once, twice, and thrice). Our study yielded three main results: 1) fire reduced the soil C concentration relative to unburned soil, but only when soil was exposed to fire once, 2) soil pH and NO3--N increased with fire frequency, whereas enzyme activity decreased, and 3) soil organic matter contents and microbial respiration were suppressed significantly in the once and thrice burned soils compared to the unburned and twice burned soils. Taken together, our findings suggest that a one-time fire in this region of the sagebrush steppe is capable of significantly changing soil properties that alter plant-soil feedbacks and hinder ecosystem resilience, thus contributing to ecosystem change particularly when fire frequency increases."--Boise State University ScholarWorks.

Soils Under Fire

Soils Under Fire
Author: Heather E. Erickson
Publisher:
Total Pages: 24
Release: 2008
Genre: Fire ecology
ISBN:

Download Soils Under Fire Book in PDF, Epub and Kindle

Soils are fundamental to a healthy and functioning ecosystem. Therefore, forest land managers can greatly benefit from a more thorough understanding of the ecological impacts of fire and fuel management activities on the vital services soils provide. We present a summary of new research on fire effects and soils made possible through the Joint Fire Science Program and highlight management implications where applicable. Some responses were consistent across sites, whereas others were unique and may not easily be extrapolated to other sites. Selected findings include (1) postfire soil water repellency is most likely to occur in areas of high burn severity and is closely related to surface vegetation; (2) although wildfire has the potential to decrease the amount of carbon stored in soils, major changes in land use, such as conversion from forest to grasslands, present a much greater threat to carbon storage; (3) prescribed fires, which tend to burn less severely than wildfires and oftentimes have minor effects on soils, may nonetheless decrease species richness of certain types of fungi; and (4) early season prescribed burns tend to have less impact than late season burns on soil organisms, soil carbon, and other soil properties.

A Review of Fire Effects on Vegetation and Soils in the Great Basin Region

A Review of Fire Effects on Vegetation and Soils in the Great Basin Region
Author: Richard F. Miller
Publisher:
Total Pages: 126
Release: 2013
Genre: Fire ecology
ISBN:

Download A Review of Fire Effects on Vegetation and Soils in the Great Basin Region Book in PDF, Epub and Kindle

This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site's resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

A Review of Fire Effects on Vegetation and Soils in the Great Basic Region

A Review of Fire Effects on Vegetation and Soils in the Great Basic Region
Author: United States Department of Agriculture
Publisher: CreateSpace
Total Pages: 138
Release: 2015-06-26
Genre:
ISBN: 9781508698548

Download A Review of Fire Effects on Vegetation and Soils in the Great Basic Region Book in PDF, Epub and Kindle

This review synthesizes the stat of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain.

Soil Community Dynamics in Sagebrush and Cheatgrass-invaded Ecosystems of the Northern Great Basin

Soil Community Dynamics in Sagebrush and Cheatgrass-invaded Ecosystems of the Northern Great Basin
Author: Nicole M. DeCrappeo
Publisher:
Total Pages: 276
Release: 2011
Genre: Cheatgrass brome
ISBN:

Download Soil Community Dynamics in Sagebrush and Cheatgrass-invaded Ecosystems of the Northern Great Basin Book in PDF, Epub and Kindle

Sagebrush steppe ecosystems in the Great Basin have become increasingly threatened by the proliferation of cheatgrass (Bromus tectorum L.), an invasive annual grass. Diverse sagebrush and perennial bunchgrass landscapes can be converted to homogenous cheatgrass grasslands mainly through the effects of fire. Although the consequences of this conversion are well understood in the context of plant community dynamics, information on changes to soil communities has not been well documented. I characterized soil surface, microbial, and nematode community dynamics in sagebrush steppe and cheatgrass-invaded areas across the northern Great Basin. I also examined how restoration treatments, such as seeding with a low impact rangeland drill and applying herbicide or sugar to plots, affected soil communities. Soil community functional diversity and structure were alike at sites where soil pH and percent bare ground were similar. Rangeland drill seeding and associated human trampling decreased biological soil crust cover at sites with high proportions of cyanobacteria. Herbicide treatments had little effect on soil communities, but addition of sugar to plots increased carbohydrate utilization and fungal biomass of cheatgrass- invaded soils. In studying paired intact and cheatgrass-invaded sagebrush plots, I found that microbial functional diversity and community composition were different in sagebrush, bunchgrass, cheatgrass, and interspace soils. Fungal biomass and species richness were highest under sagebrush and decreased under cheatgrass. To examine how soil community shifts might affect ecosystem processes, I investigated the contribution of fungi to inorganic nitrogen (N) mineralization in sagebrush and cheatgrass rhizospheres. Results from a 15N pool dilution experiment modified with the fungal protein synthesis inhibitor cycloheximide showed that gross and net N cycling rates did not differ between control sagebrush and cheatgrass soils and that fungi were important for gross NH4+ production and consumption in both soil types. However, net nitrification increased in sagebrush soils after 24 h, suggesting that when organic matter decomposition by fungi ceased bacteria became carbon limited and could no longer assimilate NH4+. These studies demonstrate that cheatgrass invasion into sagebrush steppe ecosystems can bring about significant changes to soil communities and that these changes may have repercussions for ecosystem functioning in the northern Great Basin.

Vegetation Response to Prescribed Fire in Mountain Big Sagebrush Ecosystems at Lava Beds National Monument, California

Vegetation Response to Prescribed Fire in Mountain Big Sagebrush Ecosystems at Lava Beds National Monument, California
Author: Lisa M. Ellsworth
Publisher:
Total Pages: 224
Release: 2006
Genre: Big sagebrush
ISBN:

Download Vegetation Response to Prescribed Fire in Mountain Big Sagebrush Ecosystems at Lava Beds National Monument, California Book in PDF, Epub and Kindle

Anthropogenic land use alterations such as livestock grazing and fire suppression have greatly altered sagebrush grasslands of the Great Basin, facilitating invasion of exotic annuals, increases in woody species, and losses of native species. Much of the current research surrounding wildland and prescribed fire in sagebrush dominated ecosystems has focused on a persistent belief that fire in sagebrush systems results in a loss of native flora and a trend toward dominance by exotic annuals. Fire was historically the dominant disturbance throughout the sagebrush steppe and the plant species that comprised these communities possess a variety of adaptations facilitating survival to the fire regime. In order to restore ecosystems, land managers will need to reintroduce natural ecosystem processes, including natural disturbance processes. To describe the response of these plant communities to fire, I examined the plant community response, seedbank response, and reproductive and density responses of three native bunchgrasses (Pseudoroegneria spicata, Achnatherum therberianum, and Elymus elymoides) as well as one native forb (Calochortus macrocarpus) following spring and fall prescribed fires at Lava Beds National Monument. Fires were applied to three Artemisia tridentata ssp. vaseyana (Mountain Big Sagebrush) plant communities with different land use and fire histories. These communities were different in composition ranging from a dominance of exotic annuals to dominance by native grasses, shrubs, and trees. Little is known about how prescribed fire affects the soil seed bank in sagebrush-dominated ecosystems. To address this, we quantified the emergence of Bromus tectorum (cheatgrass) seedlings as well as emergence of seedlings of functional groups (native forbs, bunchgrasses, and shrubs) in a seedbank germination study. At the invasive dominated site (Gillems Camp), we found 91% fewer B. tectorum seedlings germinated in spring burned sites than in controls immediately following spring prescribed burns. However, soils collected one-year following fire had 40% more B. tectorum germinants (8017 germinants/m [superscript 2]) than unburned controls (5132 germinants/m [superscript 2]). Following fall burns at this site there was a similar response, with a 56% immediate reduction in B. tectorum (as compared to unburned control) and a 59% increase in B. tectorum and 58% increase in exotic forb germinants one year following fires. There was an increase in native forb germination following spring burns (94%) and fall burns (45%) at a site dominated by native plants (Fleener Chimneys). Native bunchgrass seed germination declined following spring fire in sites dominated by sagebrush and native understory vegetation (79%), and in sites where Juniperus occidentalis (western juniper) and other woody species dominated (Merrill Caves) (71%). In invasive-dominated sites (Gillems Camp), there was a decrease in B. tectorum cover following both spring (81% decrease) and fall fires (82% decrease), and little native vegetation composition change. Shrub cover, made up predominantly of Chrysothamnus nauseosus, decreased following spring (95% decrease) and fall (93% decrease) fires. At the sagebrush, native understory site (Fleener Chimneys), there was a reduction in native bunchgrass cover (64% decrease), and an increase in native forbs (168% increase) following spring burns, with no changes following fall fires. At the juniper- woody dominated site (Merrill Caves), fire treatments resulted in a decrease in woody plant cover, with no immediate postfire differences seen in the herbaceous plant community. Density of bunchgrass species (Pseudoroegneria spicata, Achnatherum therberianum, Elymus elymoides) did not change following either spring or fall prescribed fire treatments. Fire enhanced flowering was not seen in C. macrocarpus following spring or fall burns at the native or juniper dominated sites. There was increased reproductive effort in native bunchgrass species following fires in all communities studied. Following spring fires at invasive dominated sites, there was a 245% increase in reproductive culms of P. spicata. Following fall fires in native dominated sites, we saw a 974% increase in reproductive culms of P. spicata and a 184% increase in reproductive culms of A. therberianum. Following fall fires at juniper-dominated sites, we saw in an increase in reproductive culms of P. spicata (678% increase), A. thurberianum (356% increase), and Elymus elymoides (209% increase). These results suggest that implementing prescribed fire in order to restore the natural disturbance regime in these fire-adapted ecosystems is beneficial to restoration and preservation of the native biota.