Semi-Blind Signal Detection for Mimo and Mimo-Ofdm Systems

Semi-Blind Signal Detection for Mimo and Mimo-Ofdm Systems
Author: Shaodan Ma
Publisher: Open Dissertation Press
Total Pages:
Release: 2017-01-27
Genre:
ISBN: 9781361469323

Download Semi-Blind Signal Detection for Mimo and Mimo-Ofdm Systems Book in PDF, Epub and Kindle

This dissertation, "Semi-blind Signal Detection for MIMO and MIMO-OFDM Systems" by Shaodan, Ma, 馬少丹, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled "Semi-Blind Signal Detection for MIMO and MIMO-OFDM Systems" Submitted by Ma Shaodan for the degree of Doctor of Philosophy at The University of Hong Kong in May 2006 MIMO (Multiple Input Multiple Output) and MIMO-OFDM (Orthogonal Frequency Division Multiplexing) systems have attracted a lot of research interest in recent years due to their potential for future high speed wireless communications. This thesis focuses on the problem of signal detection and proposes three semi-blind algorithms for MIMO, MIMO-OFDM with short cyclic prefix (CP), and MIMO- OFDM without CP, respectively. A three-step semi-blind Rake-based multi-user detection technique is proposed for quasi-synchronous MIMO systems. The first step separates the multi-user multi-path signal vector into multi-user single-path signal vectors based on second-order statistics (SOS) of the received signals. A simple estimation method is proposed in the second step to estimate the time delays with the aid of pilots. The third step combines multiple multi-user single-path signal vectors for signal detection. System performance is improved by time diversity and only the upper bounds of the channel length and the time delays are required. Simulation results show that the proposed technique achieves good performance and is not sensitive to over-estimation of the maximum channel length and the maximum time delay. A MIMO-OFDM system with short CP is next considered for higher bandwidth efficiency and a time domain semi-blind signal detection algorithm is proposed. A new system model in which the i th received OFDM symbol is left shifted by J samples is introduced. Based on some structural properties of the new system model, an equalizer is designed using SOS of the received signals to cancel most of the inter- symbol interference (ISI). The transmitted signals are then detected from the equalizer output. In the proposed algorithm, only 2P ( P is the number of transmit antennas/users in MIMO-OFDM systems) columns of the channel matrix need to be estimated, and channel length estimation is unnecessary. In addition, the proposed algorithm is applicable irrespective of whether the channel length is shorter than, equal to or longer than the CP length. Simulation results verify the effectiveness of the proposed algorithm, and show that it outperforms the existing ones in all cases. Finally, in order to further improve bandwidth efficiency, a MIMO-OFDM system without CP is considered and a two-step semi-blind signal detection algorithm is proposed. The algorithm is based on some structural properties derived from shifting the received OFDM symbols. The first step cancels inter-carrier interference (ICI) and ISI with an equalizer designed using SOS of the shifted received OFDM symbols. The second step involves signal detection from the equalizer output in which the signals are still corrupted with multi-antenna interference (MAI). In the proposed algorithm, precise knowledge of the channel length is unnecessary and only one pilot OFDM symbol is utilized to estimate the required channel state information. Simulation results show that the proposed algorithm achieves comparable performance to algorithms for standard MIMO-OFDM systems and it is robust against channel length overestimation. The number of words: 460 DOI: 10.5353/th_b3684656 Subjects: Signal detection Algorithms MIMO systems Orthogonal

Signal-perturbation-free Semi-blind Channel Estimation for MIMO-OFDM Systems

Signal-perturbation-free Semi-blind Channel Estimation for MIMO-OFDM Systems
Author: Feng Wan
Publisher:
Total Pages: 0
Release: 2009
Genre:
ISBN:

Download Signal-perturbation-free Semi-blind Channel Estimation for MIMO-OFDM Systems Book in PDF, Epub and Kindle

Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) has been considered as a strong candidate for the beyond 3G (B3G) wireless communication systems, due to its high data-rate wireless transmission performance. It is well known that the advantages promised by MIMO-OFDM systems rely on the precise knowledge of the channel state information (CSI). In real wireless environments, however, the channel condition is unknown. Therefore, channel estimation is of crucial importance in MIMO-OFDM systems. Semi-blind channel estimation as a combination of the training-based or pilot-assisted method and the pure blind approach is considered to be a feasible solution for practical wireless systems due to its better estimation accuracy as well as spectral efficiency. In this thesis, we address the semi-blind channel estimation issue of MIMO-OFDM systems with an objective to develop very efficient channel estimation approaches. In the first part of the dissertation, several nulling-based semi-blind approaches are presented for the estimation of time-domain MIMO-OFDM channels. By incorporating a blind constraint that is derived from MIMO linear prediction (LP) into a training-based least-square method, a semi-blind solution for the time-domain channel estimation is first obtained. It is revealed through a perturbation analysis that the semi-blind solution is not subject to signal perturbation and therefore is superior to pure blind estimation methods. The LP-based semi-blind method is then extended for the channel estimation of MIMO-OFDM systems with pulse-shaping. By exploiting the pulse-shaping filter in the transmitter and the matched filter in the receiver, a very efficient semi-blind approach is developed for the estimation of sampling duration based multipath channels. A frequency-domain correlation matrix estimation algorithm is also presented to facilitate the computation of time-domain second-order statistics required in the LP-based method. The nulling-based semi-blind estimation issue of sparse MIMO-OFDM channels is also addressed. By disclosing and using a relationship between the positions of the most significant taps (MST) of the sparse channel and the lags of nonzero correlation matrices of the received signal, a novel estimation approach consisting of the MST detection and the sparse channel estimation, both in a semi-blind fashion, is developed. An intensive simulation study of all the proposed nulling-based methods with comparison to some existing techniques is conducted, showing a significant superiority of the new methodologies. The second part of the dissertation is dedicated to the development of two signal-perturbation-free (SPF) semi-blind channel estimation algorithms based on a novel transmit scheme that bears partial information of the second-order statistics of the transmitted signal to receiver. It is proved that the new transmit scheme can completely cancel the signal perturbation error in the noise-free case, thereby improving largely the estimation accuracy of correlation matrix for channel estimation in noisy conditions. It is also shown that the overhead caused by the transmission of the 8PF data is negligible as compared to that of regular pilot signals. By using the proposed transmit scheme, a whitening rotation (WR)-based algorithm is first developed for frequency-domain MIMO-OFDM channel estimation. It is shown through both theoretical analysis and simulation study that the new WR-based algorithm significantly outperforms the conventional WR-based method and the nulling-based semi-blind method. By using MIMO linear prediction, the new WR-based algorithm utilizing the 8PF transmit scheme is then extended for time-domain MIMO-OFDM channel estimation. Computer simulations show that the proposed signal-perturbation-free LP-based semi-blind solution performs much better than the LP semi-blind method without using the proposed transmit scheme, the LS method as well as the nulling-based semi-blind method in terms of the MSE of the channel estimate.

Semi Blind Time Domain Equalization for MIMO-OFDM Systems

Semi Blind Time Domain Equalization for MIMO-OFDM Systems
Author:
Publisher:
Total Pages:
Release:
Genre:
ISBN:

Download Semi Blind Time Domain Equalization for MIMO-OFDM Systems Book in PDF, Epub and Kindle

In this thesis, a semi-blind time-domain equalization technique is proposed for general MIMO OFDM systems. The received OFDM symbols are shifted by more than or equal to the cyclic prefix (CP) length, and a blind equalizer is designed to completely suppress both inter-carrier interference (ICI) and inter-symbol interference (ISI) using second-order statistics of the shifted received OFDM symbols. Only a one-tap equalizer is needed to detect the time domain signals from the blind equalizer output, and one pilot OFDM symbol is utilized to estimate the required channel state information for the design of the one-tap equalizer. Simulation results show that this technique is robust against the number of shifts in excess of the CP length.

MIMO-OFDM Wireless Communications with MATLAB

MIMO-OFDM Wireless Communications with MATLAB
Author: Yong Soo Cho
Publisher: John Wiley & Sons
Total Pages: 458
Release: 2010-08-20
Genre: Technology & Engineering
ISBN: 0470825626

Download MIMO-OFDM Wireless Communications with MATLAB Book in PDF, Epub and Kindle

MIMO-OFDM is a key technology for next-generation cellular communications (3GPP-LTE, Mobile WiMAX, IMT-Advanced) as well as wireless LAN (IEEE 802.11a, IEEE 802.11n), wireless PAN (MB-OFDM), and broadcasting (DAB, DVB, DMB). In MIMO-OFDM Wireless Communications with MATLAB®, the authors provide a comprehensive introduction to the theory and practice of wireless channel modeling, OFDM, and MIMO, using MATLAB® programs to simulate the various techniques on MIMO-OFDM systems. One of the only books in the area dedicated to explaining simulation aspects Covers implementation to help cement the key concepts Uses materials that have been classroom-tested in numerous universities Provides the analytic solutions and practical examples with downloadable MATLAB® codes Simulation examples based on actual industry and research projects Presentation slides with key equations and figures for instructor use MIMO-OFDM Wireless Communications with MATLAB® is a key text for graduate students in wireless communications. Professionals and technicians in wireless communication fields, graduate students in signal processing, as well as senior undergraduates majoring in wireless communications will find this book a practical introduction to the MIMO-OFDM techniques. Instructor materials and MATLAB® code examples available for download at www.wiley.com/go/chomimo

Large MIMO Systems

Large MIMO Systems
Author: A. Chockalingam
Publisher: Cambridge University Press
Total Pages: 335
Release: 2014-02-06
Genre: Computers
ISBN: 1107026652

Download Large MIMO Systems Book in PDF, Epub and Kindle

This exclusive coverage of the opportunities, technological challenges, solutions, and state of the art of large MIMO systems provides an in-depth discussion of algorithms for large MIMO signal processing, suited for large MIMO signal detection, precoding and LDPC code designs. An ideal resource for researchers, designers, developers and practitioners in wireless communications.