Seismic Vulnerability Analysis of Scoured Bridge Systems

Seismic Vulnerability Analysis of Scoured Bridge Systems
Author: Xuan Guo
Publisher:
Total Pages: 255
Release: 2014
Genre: Bridges
ISBN:

Download Seismic Vulnerability Analysis of Scoured Bridge Systems Book in PDF, Epub and Kindle

Bridges are a vital infrastructure component of the transportation networks in both rural and urban areas. Damaged or destroyed bridges can affect the reliability and resilience of transportation networks that are critical to human life, economical activities, and the social sustainability at large. Understanding how natural hazards affect the life-cycle performance of bridge systems will lead to improved preparedness prior to extreme disasters and benefit the society ultimately. Among many natural events, flood-induced foundation scour has been recognized as a leading cause of bridge failure in the United States. The distinct feature of flood-induced scour is that it may last during the rest of bridge's service life once it is formed around a bridge foundation. Intuitively, the threat may be potentially more severe if the permanent scour is combined with other hazards, such as earthquakes. However, the combined effects of such multiple hazards are not clearly understood to date. It is thus meaningful to investigate the effects of multi-hazard earthquake and scour on the seismic performance of river-crossing bridges. The general objective of this dissertation is to assess the seismic vulnerability of bridge structures considering flooding-induced scour in a general multi-hazard context. To meet this objective, five related research problems are defined in this dissertation. Correspondingly, scientific answers and technical solution frameworks are developed in this dissertation. The dissertation directly contributes to the multi-hazard assessment methodology with an emphasis in flood-induced scour and earthquake hazards. Specifically, the dissertation directly resolves the practical challenge of evaluating the effects of bridge scour on the seismic performance of river-crossing bridges in terms of theoretical frameworks, numerical procedures, and case study-based findings. Future research directions along the line of multi-hazard bridge performance research with an emphasis of hydro- and seismic-impacts are pointed at the end of the dissertation.

Seismic Vulnerability Analysis of Bridges in Mountainous States

Seismic Vulnerability Analysis of Bridges in Mountainous States
Author: Matt Hardman
Publisher:
Total Pages: 34
Release: 2013
Genre: Bridges
ISBN:

Download Seismic Vulnerability Analysis of Bridges in Mountainous States Book in PDF, Epub and Kindle

Depending on the location, highway bridges can often support considerable amounts of traffic. Due to the limitations on current earthquake forecasting techniques, a normal amount of traffic will also typically remain on a bridge when an earthquake occurs. In addition to traffic, scour effects are also a potential hazard to bridge piers that may simultaneously impact the structural integrity of the bridge together with seismic loads. Although a few studies investigating the combined effect of extreme and service loads have been conducted on long-span bridges or in high-seismic zones, the studies on typical short- and medium-span bridges in low and moderate seismic zones are rare. A general dynamic simulation methodology is introduced to study the combined realistic service and extreme loads on short- and medium-span bridges. Following the introduction of the methodology, a numerical study investigating the seismic performance of a typical highway bridge in mountainous states is carried out. The bridge is subjected to different combinations of traffic, seismic, and scour and the effects on the structural performance of the bridge are investigated. The bridge, including both superstructure and substructure, is modeled in detail using SAP2000 to accommodate the goals of this study. The traffic load is considered through dynamic interaction analysis of vehicles in the simulated stochastic traffic flow. Through studying the bridge performance under various combined extreme and service loads, findings are made about controlling cases for different bridge responses and the validity of the traditional superposition approach with consideration to load combinations is also discussed. As the initial effort studied the bridge performance under multiple service and extreme loads, this study sheds some light on more comprehensive studies for the future.

Seismic Vulnerability of New Highway Construction

Seismic Vulnerability of New Highway Construction
Author:
Publisher:
Total Pages: 28
Release: 2002
Genre: Bridges
ISBN:

Download Seismic Vulnerability of New Highway Construction Book in PDF, Epub and Kindle

This executive summary gives an overview of the results of FHWA Contract DTFH61 92 C 00112, Seismic Research Program, which performed a series of special studies addressing the seismic design of new construction. The objectives of this project were to perform a series of special studies pertaining to the seismic vulnerability of highway structures, and to develop technical information on which future specifications for the seismic design of bridges could be based. This project divided work into 5 areas and 13 tasks, focusing on the following elements: review of current seismic design criteria, the seismic hazard exposure of the American highway system, foundation design and soil behavior, structural design, structural analysis and response, the relative importance of specific bridges and an assessment of the impact of current and recently completed research. The Seismic Research Program had a national focus, and aimed in part to address the differences in seismicity, bridge types, and typical design details between the central and eastern United States (CEUS) and those previously studied in California and the western United States. In many cases, west coast design practices required considerable modification before implementation in the CEUS. The project resulted in 34 research reports, of which 31 are summarized in this document. Seventeen of the reports have been published as National Center for Earthquake Engineering Research (NCEER) or Multidisciplinary Center for Earthquake Engineering Research (MCEER) reports. The research agencies final reports for the other taks are available from MCEER upon request.

Seismic Vulnerability Assessment of Retrofitted Bridges Using Probabilistic Methods

Seismic Vulnerability Assessment of Retrofitted Bridges Using Probabilistic Methods
Author: Jamie Ellen Padgett
Publisher:
Total Pages: 270
Release: 2007
Genre:
ISBN: 9780549008798

Download Seismic Vulnerability Assessment of Retrofitted Bridges Using Probabilistic Methods Book in PDF, Epub and Kindle

There is an urgent need for the development of fragility curves for retrofitted bridges, particularly for the CSUS. These fragility curves are conditional probability statements of potential levels of damage over a range of earthquake intensities. The development of reliable retrofitted bridge fragility curves would allow for assessment of the effects of various retrofit measures on the performance of different CSUS bridge types. Therefore, a primary objective of this work is to develop a methodology for fragility assessment of bridge retrofit, in order to support seismic risk mitigation efforts in the region.

Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales

Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales
Author: Tiago Miguel Ferreira
Publisher: Woodhead Publishing
Total Pages: 396
Release: 2021-12-02
Genre: Technology & Engineering
ISBN: 0128240725

Download Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales Book in PDF, Epub and Kindle

Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales: From Single Buildings to Large-Scale Assessment provides an integrated, multiscale platform for fundamental and applied studies on the seismic vulnerability assessment of civil engineering structures, including buildings with different materials and building typologies. The book shows how various outputs obtained from different scales and layers of assessment (from building scale to the urban area) can be used to outline and implement effective risk mitigation, response and recovery strategies. In addition, it highlights how significant advances in earthquake engineering research have been achieved with the rise of new technologies and techniques. The wide variety of construction and structural systems associated with the complex behavior of their materials significantly limits the application of current codes and building standards to the existing building stock, hence this book is a welcomed guide on new construction standards and practices. Provides the theoretical backgrounds on the most advanced seismic vulnerability assessment approaches at different scales and for most common building typologies Covers the most common building typologies and the materials they are made from, such as concrete, masonry, steel, timber and raw earth Presents practical guidelines on how the outputs coming from such approaches can be used to outline effective risk mitigation and emergency planning strategies

Seismic Design and Assessment of Bridges

Seismic Design and Assessment of Bridges
Author: Andreas J Kappos
Publisher: Springer Science & Business Media
Total Pages: 233
Release: 2012-04-17
Genre: Technology & Engineering
ISBN: 9400739435

Download Seismic Design and Assessment of Bridges Book in PDF, Epub and Kindle

The book focuses on the use of inelastic analysis methods for the seismic assessment and design of bridges, for which the work carried out so far, albeit interesting and useful, is nevertheless clearly less than that for buildings. Although some valuable literature on the subject is currently available, the most advanced inelastic analysis methods that emerged during the last decade are currently found only in the specialised research-oriented literature, such as technical journals and conference proceedings. Hence the key objective of this book is two-fold, first to present all important methods belonging to the aforementioned category in a uniform and sufficient for their understanding and implementation length, and to provide also a critical perspective on them by including selected case-studies wherein more than one methods are applied to a specific bridge and by offering some critical comments on the limitations of the individual methods and on their relative efficiency. The book should be a valuable tool for both researchers and practicing engineers dealing with seismic design and assessment of bridges, by both making the methods and the analytical tools available for their implementation, and by assisting them to select the method that best suits the individual bridge projects that each engineer and/or researcher faces.

Soil Dynamics and Foundation Modeling

Soil Dynamics and Foundation Modeling
Author: Junbo Jia
Publisher: Springer
Total Pages: 741
Release: 2017-11-26
Genre: Technology & Engineering
ISBN: 3319403583

Download Soil Dynamics and Foundation Modeling Book in PDF, Epub and Kindle

This book presents a comprehensive topical overview on soil dynamics and foundation modeling in offshore and earthquake engineering. The spectrum of topics include, but is not limited to, soil behavior, soil dynamics, earthquake site response analysis, soil liquefactions, as well as the modeling and assessment of shallow and deep foundations. The author provides the reader with both theory and practical applications, and thoroughly links the methodological approaches with engineering applications. The book also contains cutting-edge developments in offshore foundation engineering such as anchor piles, suction piles, pile torsion modeling, soil ageing effects and scour estimation. The target audience primarily comprises research experts and practitioners in the field of offshore engineering, but the book may also be beneficial for graduate students.