Prestack Depth Migration and Velocity Model Building

Prestack Depth Migration and Velocity Model Building
Author: Ian Frederick Jones
Publisher: SEG Books
Total Pages: 1427
Release: 2008
Genre: Science
ISBN: 1560801476

Download Prestack Depth Migration and Velocity Model Building Book in PDF, Epub and Kindle

Compilation of material published 1983-2004.

Prestack Depth Migration and Velocity Model Building

Prestack Depth Migration and Velocity Model Building
Author:
Publisher:
Total Pages: 852
Release: 2008
Genre: Petroleum
ISBN: 9781560801917

Download Prestack Depth Migration and Velocity Model Building Book in PDF, Epub and Kindle

This volume brings together works published since the early 1980s, striking a balance between algorithm development and estimation of subsurface velocity and anisotropy parameters. In that time span, a radical change has occurred in the way seismic processing has delivered a subsurface image. The traditional purely compartmentalized approach has been superseded by a multidisciplinary collaborative workflow to build iteratively a subsurface velocity model suitable for detailed and quantitative imaging. Jones et al. emphasize works that have had the most practical industrial application rather than assessing all approaches equally. Hence, the bias is away from R & D and toward industrial practice. Because of the distribution of papers in this reprint edition, split between migration algorithm and velocity estimation techniques, this volume will appeal to processing specialists and interpretation geoscientists alike.

Seismic Velocity Estimation from Time Migration

Seismic Velocity Estimation from Time Migration
Author:
Publisher:
Total Pages: 102
Release: 2007
Genre:
ISBN:

Download Seismic Velocity Estimation from Time Migration Book in PDF, Epub and Kindle

This is concerned with imaging and wave propagation in nonhomogeneous media, and includes a collection of computational techniques, such as level set methods with material transport, Dijkstra-like Hamilton-Jacobi solvers for first arrival Eikonal equations and techniques for data smoothing. The theoretical components include aspects of seismic ray theory, and the results rely on careful comparison with experiment and incorporation as input into large production-style geophysical processing codes. Producing an accurate image of the Earth's interior is a challenging aspect of oil recovery and earthquake analysis. The ultimate computational goal, which is to accurately produce a detailed interior map of the Earth's makeup on the basis of external soundings and measurements, is currently out of reach for several reasons. First, although vast amounts of data have been obtained in some regions, this has not been done uniformly, and the data contain noise and artifacts. Simply sifting through the data is a massive computational job. Second, the fundamental inverse problem, namely to deduce the local sound speeds of the earth that give rise to measured reacted signals, is exceedingly difficult: shadow zones and complex structures can make for ill-posed problems, and require vast computational resources. Nonetheless, seismic imaging is a crucial part of the oil and gas industry. Typically, one makes assumptions about the earth's substructure (such as laterally homogeneous layering), and then uses this model as input to an iterative procedure to build perturbations that more closely satisfy the measured data. Such models often break down when the material substructure is significantly complex: not surprisingly, this is often where the most interesting geological features lie. Data often come in a particular, somewhat non-physical coordinate system, known as time migration coordinates. The construction of substructure models from these data is less and less reliable as the earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a 'velocity model'. We address the problem of estimating seismic velocities inside the earth, id est, the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, id est, unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.

Land Seismic Case Studies for Near-Surface Modeling and Subsurface Imaging

Land Seismic Case Studies for Near-Surface Modeling and Subsurface Imaging
Author: Öz Yilmaz
Publisher: SEG Books
Total Pages: 1056
Release: 2021-06-30
Genre: Science
ISBN: 1560803800

Download Land Seismic Case Studies for Near-Surface Modeling and Subsurface Imaging Book in PDF, Epub and Kindle

Written for practicing geophysicists, “Land Seismic Case Studies for Near-Surface Modeling and Subsurface Imaging” is a comprehensive guide to understanding and interpreting seismic data. The culmination of land seismic data acquisition and processing projects conducted by the author over the last two decades, this book contains more than nearly 800 figures from worldwide case studies—conducted in both 2D and 3D. Beginning with Chapter 1 on seismic characterization of the near-surface, Chapter 2 presents near-surface modeling by traveltime and full-wave inversion, Chapter 3 presents near-surface modeling by imaging, and then Chapter 4 includes detailed case studies for near-surface modeling. Chapter 5 reviews single- and multichannel signal processing of land seismic data with the key objective of removing surface waves and guided waves that are characterized as coherent linear noise. Uncommon seismic data acquisition methods, including large-offset acquisition in thrust belts to capture the large-amplitude supercritical reflections, swath-line acquisition, and joint PP and SH- SH seismic imaging are highlighted in Chapter 6, and Chapter 7 presents image-based rms velocity estimation and discusses the problem of velocity uncertainty. The final two chapters focus exclusively on case studies: 2D in Chapter 8 and 3D in Chapter 9. An outstanding teaching tool, this book includes analysis workflows containing processing steps designed to solve specific problems. Essential for anyone involved in acquisition, processing, and inversion of seismic data, this volume will become the definitive reference for understanding how the variables in seismic acquisition are directly reflected in the data.

Seismic Data Analysis

Seismic Data Analysis
Author: Özdoğan Yilmaz
Publisher: SEG Books
Total Pages: 2065
Release: 2001
Genre: Science
ISBN: 1560800941

Download Seismic Data Analysis Book in PDF, Epub and Kindle

Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.