Scientific Computing with Automatic Result Verification

Scientific Computing with Automatic Result Verification
Author: Adams
Publisher: Academic Press
Total Pages: 626
Release: 1992-12-03
Genre: Computers
ISBN: 0080958753

Download Scientific Computing with Automatic Result Verification Book in PDF, Epub and Kindle

Scientific Computing with Automatic Result Verification

Scientific Computation with Automatic Result Verification

Scientific Computation with Automatic Result Verification
Author: Ulrich Kulisch
Publisher: Springer Science & Business Media
Total Pages: 242
Release: 2012-12-06
Genre: Mathematics
ISBN: 3709169577

Download Scientific Computation with Automatic Result Verification Book in PDF, Epub and Kindle

Scientific Computation with Result Verification has been a persevering research topic at the Institute for Applied Mathematics of Karlsruhe University for many years. A good number of meetings have been devoted to this area. The latest of these meetings was held from 30 September to 2 October, 1987, in Karlsruhe; it was co-sponsored by the GAMM Committee on "Computer Arithmetic and Scientific Computation". - - This volume combines edited versions of selected papers presented at this confer ence, including a few which were presented at a similar meeting one year earlier. The selection was made on the basis of relevance to the topic chosen for this volume. All papers are original contributions. In an appendix, we have supplied a short account of the Fortran-SC language which permits the programming of algorithms with result verification in a natural manner. The editors hope that the publication of this material as a Supplementum of Computing will further stimulate the interest of the scientific community in this important tool for Scientific Computation. In particular, we would like to make application scientists aware of its potential. The papers in the second chapter of this volume should convince them that automatic result verification may help them to design more reliable software for their particular tasks. We wish to thank all contributors for adapting their manuscripts to the goals of this volume. We are also grateful to the Publisher, Springer-Verlag of Vienna, for an efficient and quick production.

Numerical Software with Result Verification

Numerical Software with Result Verification
Author: René Alt
Publisher: Springer Science & Business Media
Total Pages: 324
Release: 2004-03-12
Genre: Computers
ISBN: 3540212604

Download Numerical Software with Result Verification Book in PDF, Epub and Kindle

This book constitutes the thoroughly refereed post-proceedings of the Dagstuhl Seminar 03041 on Numerical Software with Result Verification held at Dagstuhl Castle, Germany, in January 2003. The 18 revised full papers presented were selected during two rounds of reviewing and improvements. The papers are organized in topical sections on languages, software systems and tools, new verification techniques based on interval arithmetic, applications in science and engineering, and novel approaches to verification.

Accuracy and Reliability in Scientific Computing

Accuracy and Reliability in Scientific Computing
Author: Bo Einarsson
Publisher: SIAM
Total Pages: 361
Release: 2005-01-01
Genre: Science
ISBN: 9780898718157

Download Accuracy and Reliability in Scientific Computing Book in PDF, Epub and Kindle

Numerical software is used to test scientific theories, design airplanes and bridges, operate manufacturing lines, control power plants and refineries, analyze financial derivatives, identify genomes, and provide the understanding necessary to derive and analyze cancer treatments. Because of the high stakes involved, it is essential that results computed using software be accurate, reliable, and robust. Unfortunately, developing accurate and reliable scientific software is notoriously difficult. This book investigates some of the difficulties related to scientific computing and provides insight into how to overcome them and obtain dependable results. The tools to assess existing scientific applications are described, and a variety of techniques that can improve the accuracy and reliability of newly developed applications is discussed. Accuracy and Reliability in Scientific Computing can be considered a handbook for improving the quality of scientific computing. It will help computer scientists address the problems that affect software in general as well as the particular challenges of numerical computation: approximations occurring at all levels, continuous functions replaced by discretized versions, infinite processes replaced by finite ones, and real numbers replaced by finite precision numbers. Divided into three parts, it starts by illustrating some of the difficulties in producing robust and reliable scientific software. Well-known cases of failure are reviewed and the what and why of numerical computations are considered. The second section describes diagnostic tools that can be used to assess the accuracy and reliability of existing scientific applications. In the last section, the authors describe a variety of techniques that can be employed to improve the accuracy and reliability of newly developed scientific applications. The authors of the individual chapters are international experts, many of them members of the IFIP Working Group on Numerical Software.

C-XSC

C-XSC
Author: Rudi Klatte
Publisher: Springer Science & Business Media
Total Pages: 277
Release: 2012-12-06
Genre: Computers
ISBN: 3642580580

Download C-XSC Book in PDF, Epub and Kindle

C-XSC is a tool for the development of numerical algorithms delivering highly accurate and automatically verified results. It provides a large number of predefined numerical data types and operators. These types are implemented as C++ classes. Thus, C-XSC allows high-level programming of numerical applications in C and C++. The most important features of C-XSC are: real, complex, interval, and complex interval arithmetic; dynamic vectors and matrices; subarrays of vectors and matrices; dotprecision data types, predefined arithmetic operators with maximum accuracy; standard functions of high accuracy; multiple precision arithmetic and standard functions; rounding control for I/O data; error handling, and library of problem solving routines with automatic result verification. Thus, C-XSC makes the computer more powerful concerning the arithmetic. C-XSC is immediately usable by C programmers, easy to learn, user-extendable, and may also be combined with other tools. The book can be used as a textbook and as a reference manual. It consists of an introduction to advanced computer arithmetic, a chapter describing the programming languages C and C++, the major chapter "C-XSC Reference", sample programs, and indices.

Numerical Toolbox for Verified Computing I

Numerical Toolbox for Verified Computing I
Author: Rolf Hammer
Publisher: Springer Science & Business Media
Total Pages: 348
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642784232

Download Numerical Toolbox for Verified Computing I Book in PDF, Epub and Kindle

As suggested by the title of this book Numerical Toolbox for Verified Computing, we present an extensive set of sophisticated tools to solve basic numerical problems with a verification of the results. We use the features of the scientific computer language PASCAL-XSC to offer modules that can be combined by the reader to his/her individual needs. Our overriding concern is reliability - the automatic verification of the result a computer returns for a given problem. All algorithms we present are influenced by this central concern. We must point out that there is no relationship between our methods of numerical result verification and the methods of program verification to prove the correctness of an imple~entation for a given algorithm. This book is the first to offer a general discussion on • arithmetic and computational reliability, • analytical mathematics and verification techniques, • algorithms, and • (most importantly) actual implementations in the form of working computer routines. Our task has been to find the right balance among these ingredients for each topic. For some topics, we have placed a little more emphasis on the algorithms. For other topics, where the mathematical prerequisites are universally held, we have tended towards more in-depth discussion of the nature of the computational algorithms, or towards practical questions of implementation. For all topics, we present exam ples, exercises, and numerical results demonstrating the application of the routines presented.

C++ Toolbox for Verified Computing I

C++ Toolbox for Verified Computing I
Author: Rolf Hammer
Publisher: Springer Science & Business Media
Total Pages: 389
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642796516

Download C++ Toolbox for Verified Computing I Book in PDF, Epub and Kindle

Our aim in writing this book was to provide an extensive set of C++ programs for solving basic numerical problems with verification of the results. This C++ Toolbox for Verified Computing I is the C++ edition of the Numerical Toolbox for Verified Computing l. The programs of the original edition were written in PASCAL-XSC, a PASCAL eXtension for Scientific Computation. Since we published the first edition we have received many requests from readers and users of our tools for a version in C++. We take the view that C++ is growing in importance in the field of numeri cal computing. C++ includes C, but as a typed language and due to its modern concepts, it is superior to C. To obtain the degree of efficiency that PASCAL-XSC provides, we used the C-XSC library. C-XSC is a C++ class library for eXtended Scientific Computing. C++ and the C-XSC library are an adequate alternative to special XSC-Ianguages such as PASCAL-XSC or ACRITH-XSC. A shareware version of the C-XSC library and the sources of the toolbox programs are freely available via anonymous ftp or can be ordered against reimbursement of expenses. The programs of this book do not require a great deal of insight into the features of C++. Particularly, object oriented programming techniques are not required.

Computer Arithmetic and Validity

Computer Arithmetic and Validity
Author: Ulrich Kulisch
Publisher: Walter de Gruyter
Total Pages: 456
Release: 2013-04-30
Genre: Mathematics
ISBN: 3110301792

Download Computer Arithmetic and Validity Book in PDF, Epub and Kindle

This is the revised and extended second edition of the successful basic book on computer arithmetic. It is consistent with the newest recent standard developments in the field. The book shows how the arithmetic and mathematical capability of the digital computer can be enhanced in a quite natural way. The work is motivated by the desire and the need to improve the accuracy of numerical computing and to control the quality of the computed results (validity). The accuracy requirements for the elementary floating-point operations are extended to the customary product spaces of computations including interval spaces. The mathematical properties of these models are extracted into an axiomatic approach which leads to a general theory of computer arithmetic. Detailed methods and circuits for the implementation of this advanced computer arithmetic on digital computers are developed in part two of the book. Part three then illustrates by a number of sample applications how this extended computer arithmetic can be used to compute highly accurate and mathematically verified results. The book can be used as a high-level undergraduate textbook but also as reference work for research in computer arithmetic and applied mathematics.

Scientific Computing, Computer Arithmetic, and Validated Numerics

Scientific Computing, Computer Arithmetic, and Validated Numerics
Author: Marco Nehmeier
Publisher: Springer
Total Pages: 291
Release: 2016-04-08
Genre: Computers
ISBN: 3319317695

Download Scientific Computing, Computer Arithmetic, and Validated Numerics Book in PDF, Epub and Kindle

This book constitutes the refereed post proceedings of the 16th International Symposium, SCAN 2014, held in Würzburg, Germany, in September 2014. The 22 full papers presented were carefully reviewed and selected from 60 submissions. The main concerns of research addressed by SCAN conferences are validation, verification or reliable assertions of numerical computations. Interval arithmetic and other treatments of uncertainty are developed as appropriate tools.