Scientific Computing

Scientific Computing
Author: Michael T. Heath
Publisher: SIAM
Total Pages: 567
Release: 2018-11-14
Genre: Science
ISBN: 1611975573

Download Scientific Computing Book in PDF, Epub and Kindle

This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.

Fundamentals of Scientific Computing

Fundamentals of Scientific Computing
Author: Bertil Gustafsson
Publisher: Springer Science & Business Media
Total Pages: 317
Release: 2011-06-11
Genre: Mathematics
ISBN: 3642194958

Download Fundamentals of Scientific Computing Book in PDF, Epub and Kindle

The book of nature is written in the language of mathematics -- Galileo Galilei How is it possible to predict weather patterns for tomorrow, with access solely to today’s weather data? And how is it possible to predict the aerodynamic behavior of an aircraft that has yet to be built? The answer is computer simulations based on mathematical models – sets of equations – that describe the underlying physical properties. However, these equations are usually much too complicated to solve, either by the smartest mathematician or the largest supercomputer. This problem is overcome by constructing an approximation: a numerical model with a simpler structure can be translated into a program that tells the computer how to carry out the simulation. This book conveys the fundamentals of mathematical models, numerical methods and algorithms. Opening with a tutorial on mathematical models and analysis, it proceeds to introduce the most important classes of numerical methods, with finite element, finite difference and spectral methods as central tools. The concluding section describes applications in physics and engineering, including wave propagation, heat conduction and fluid dynamics. Also covered are the principles of computers and programming, including MATLAB®.

Introduction to the Tools of Scientific Computing

Introduction to the Tools of Scientific Computing
Author: Einar Smith
Publisher: Springer Nature
Total Pages: 344
Release: 2020-12-02
Genre: Mathematics
ISBN: 3030608085

Download Introduction to the Tools of Scientific Computing Book in PDF, Epub and Kindle

The book provides an introduction to common programming tools and methods in numerical mathematics and scientific computing. Unlike widely used standard approaches, it does not focus on any particular language but aims to explain the key underlying concepts. In general, new concepts are first introduced in the particularly user-friendly Python language and then transferred and expanded in various scientific programming environments from C / C ++, Julia and MATLAB to Maple. This includes different approaches to distributed computing. The fact that different languages are studied and compared also makes the book useful for mathematicians and practitioners trying to decide which programming language to use for which purposes.

Guide to Scientific Computing in C++

Guide to Scientific Computing in C++
Author: Joe Pitt-Francis
Publisher: Springer Science & Business Media
Total Pages: 257
Release: 2012-02-15
Genre: Computers
ISBN: 1447127366

Download Guide to Scientific Computing in C++ Book in PDF, Epub and Kindle

This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.

Elements of Scientific Computing

Elements of Scientific Computing
Author: Aslak Tveito
Publisher: Springer Science & Business Media
Total Pages: 471
Release: 2010-09-24
Genre: Mathematics
ISBN: 3642112994

Download Elements of Scientific Computing Book in PDF, Epub and Kindle

Science used to be experiments and theory, now it is experiments, theory and computations. The computational approach to understanding nature and technology is currently flowering in many fields such as physics, geophysics, astrophysics, chemistry, biology, and most engineering disciplines. This book is a gentle introduction to such computational methods where the techniques are explained through examples. It is our goal to teach principles and ideas that carry over from field to field. You will learn basic methods and how to implement them. In order to gain the most from this text, you will need prior knowledge of calculus, basic linear algebra and elementary programming.

Verification and Validation in Scientific Computing

Verification and Validation in Scientific Computing
Author: William L. Oberkampf
Publisher: Cambridge University Press
Total Pages: 782
Release: 2010-10-14
Genre: Computers
ISBN: 1139491768

Download Verification and Validation in Scientific Computing Book in PDF, Epub and Kindle

Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.

Scientific Computing with MATLAB and Octave

Scientific Computing with MATLAB and Octave
Author: Alfio Quarteroni
Publisher: Springer Science & Business Media
Total Pages: 379
Release: 2010-05-30
Genre: Mathematics
ISBN: 3642124305

Download Scientific Computing with MATLAB and Octave Book in PDF, Epub and Kindle

Preface to the First Edition This textbook is an introduction to Scienti?c Computing. We will illustrate several numerical methods for the computer solution of c- tain classes of mathematical problems that cannot be faced by paper and pencil. We will show how to compute the zeros or the integrals of continuous functions, solve linear systems, approximate functions by polynomials and construct accurate approximations for the solution of di?erential equations. With this aim, in Chapter 1 we will illustrate the rules of the game thatcomputersadoptwhenstoringandoperatingwith realandcomplex numbers, vectors and matrices. In order to make our presentation concrete and appealing we will 1 adopt the programming environment MATLAB as a faithful c- panion. We will gradually discover its principal commands, statements and constructs. We will show how to execute all the algorithms that we introduce throughout the book. This will enable us to furnish an - mediate quantitative assessment of their theoretical properties such as stability, accuracy and complexity. We will solve several problems that will be raisedthrough exercises and examples, often stemming from s- ci?c applications.

Numerical Methods in Scientific Computing:

Numerical Methods in Scientific Computing:
Author: Germund Dahlquist
Publisher: SIAM
Total Pages: 741
Release: 2008-09-04
Genre: Mathematics
ISBN: 0898716446

Download Numerical Methods in Scientific Computing: Book in PDF, Epub and Kindle

This work addresses the increasingly important role of numerical methods in science and engineering. It combines traditional and well-developed topics with other material such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions.

An Introduction to High-performance Scientific Computing

An Introduction to High-performance Scientific Computing
Author: Lloyd Dudley Fosdick
Publisher: MIT Press
Total Pages: 838
Release: 1996
Genre: Computers
ISBN: 9780262061810

Download An Introduction to High-performance Scientific Computing Book in PDF, Epub and Kindle

Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series

Scientific Computing

Scientific Computing
Author: Timo Heister
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 184
Release: 2023-04-03
Genre: Computers
ISBN: 3110988453

Download Scientific Computing Book in PDF, Epub and Kindle

Scientific Computing for Scientists and Engineers is designed to teach undergraduate students relevant numerical methods and required fundamentals in scientific computing. Most problems in science and engineering require the solution of mathematical problems, most of which can only be done on a computer. Accurately approximating those problems requires solving differential equations and linear systems with millions of unknowns, and smart algorithms can be used on computers to reduce calculation times from years to minutes or even seconds. This book explains: How can we approximate these important mathematical processes? How accurate are our approximations? How efficient are our approximations? Scientific Computing for Scientists and Engineers covers: An introduction to a wide range of numerical methods for linear systems, eigenvalue problems, differential equations, numerical integration, and nonlinear problems; Scientific computing fundamentals like floating point representation of numbers and convergence; Analysis of accuracy and efficiency; Simple programming examples in MATLAB to illustrate the algorithms and to solve real life problems; Exercises to reinforce all topics.