Electron Scattering

Electron Scattering
Author: Colm T. Whelan
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2005-01-10
Genre: Science
ISBN: 9780306487019

Download Electron Scattering Book in PDF, Epub and Kindle

There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.

Scattering Matrix Approach to Non-stationary Quantum Transport

Scattering Matrix Approach to Non-stationary Quantum Transport
Author: Michael V. Moskalets
Publisher: World Scientific
Total Pages: 297
Release: 2012
Genre: Science
ISBN: 1848168349

Download Scattering Matrix Approach to Non-stationary Quantum Transport Book in PDF, Epub and Kindle

The aim of this book is to introduce the basic elements of the scattering matrix approach to transport phenomena in dynamical quantum systems of non-interacting electrons. This approach permits a physically clear and transparent description of transport processes in dynamical mesoscopic systems, promising basic elements of solid-state devices for quantum information processing. One of the key effects, the quantum pump effect, is considered in detail. In addition, the theory for the recently implemented new dynamical source ? injecting electrons with time delay much larger than an electron coherence time ? is offered. This theory provides a simple description of quantum circuits with such a single-particle source and shows in an unambiguous way that the tunability inherent to the dynamical systems (in contrast to the stationary ones) leads to a number of unexpected but fundamental effects.

Nuclear Science Abstracts

Nuclear Science Abstracts
Author:
Publisher:
Total Pages: 1166
Release: 1975
Genre: Nuclear energy
ISBN:

Download Nuclear Science Abstracts Book in PDF, Epub and Kindle

Publications

Publications
Author: United States. National Bureau of Standards
Publisher:
Total Pages: 620
Release: 1976
Genre: Government publications
ISBN:

Download Publications Book in PDF, Epub and Kindle

From Microphysics to Macrophysics

From Microphysics to Macrophysics
Author: Roger Balian
Publisher: Springer Science & Business Media
Total Pages: 626
Release: 2007-06-26
Genre: Science
ISBN: 3540454802

Download From Microphysics to Macrophysics Book in PDF, Epub and Kindle

This popular, often cited text returns in a softcover edition to provide a thorough introduction to statistical physics and thermodynamics, and to exhibit the universal chain of ideas leading from the laws of microphysics to the macroscopic behaviour of matter. A wide range of applications illustrates the concepts, and many exercises reinforce understanding. Volume II applies statistical methods to systems governed by quantum effects, in particular to solid state physics, explaining properties due to the crystal structure or to the lattice excitations or to the electrons. The last chapters are devoted to non-equilibrium processes and to kinetic equations, with many applications included.

Computational Science and Its Applications - ICCSA 2003

Computational Science and Its Applications - ICCSA 2003
Author: Vipin Kumar
Publisher: Springer Science & Business Media
Total Pages: 976
Release: 2003-05-08
Genre: Computers
ISBN: 354040161X

Download Computational Science and Its Applications - ICCSA 2003 Book in PDF, Epub and Kindle

The three-volume set, LNCS 2667, LNCS 2668, and LNCS 2669, constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2003, held in Montreal, Canada, in May 2003. The three volumes present more than 300 papers and span the whole range of computational science from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The proceedings give a unique account of recent results in computational science.

Dissipative Quantum Mechanics of Nanostructures

Dissipative Quantum Mechanics of Nanostructures
Author: Andrei D. Zaikin
Publisher: CRC Press
Total Pages: 393
Release: 2019-05-24
Genre: Science
ISBN: 1000024202

Download Dissipative Quantum Mechanics of Nanostructures Book in PDF, Epub and Kindle

Continuing miniaturization of electronic devices, together with the quickly growing number of nanotechnological applications, demands a profound understanding of the underlying physics. Most of the fundamental problems of modern condensed matter physics involve various aspects of quantum transport and fluctuation phenomena at the nanoscale. In nanostructures, electrons are usually confined to a limited volume and interact with each other and lattice ions, simultaneously suffering multiple scattering events on impurities, barriers, surface imperfections, and other defects. Electron interaction with other degrees of freedom generally yields two major consequences, quantum dissipation and quantum decoherence. In other words, electrons can lose their energy and ability for quantum interference even at very low temperatures. These two different, but related, processes are at the heart of all quantum phenomena discussed in this book. This book presents copious details to facilitate the understanding of the basic physics behind a result and the learning to technically reproduce the result without delving into extra literature. The book subtly balances the description of theoretical methods and techniques and the display of the rich landscape of the physical phenomena that can be accessed by these methods. It is useful for a broad readership ranging from master’s and PhD students to postdocs and senior researchers.