Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing

Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing
Author: Jean-Francois Giovannelli
Publisher: John Wiley & Sons
Total Pages: 323
Release: 2015-02-02
Genre: Technology & Engineering
ISBN: 1118827074

Download Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing Book in PDF, Epub and Kindle

The focus of this book is on "ill-posed inverse problems". These problems cannot be solved only on the basis of observed data. The building of solutions involves the recognition of other pieces of a priori information. These solutions are then specific to the pieces of information taken into account. Clarifying and taking these pieces of information into account is necessary for grasping the domain of validity and the field of application for the solutions built. For too long, the interest in these problems has remained very limited in the signal-image community. However, the community has since recognized that these matters are more interesting and they have become the subject of much greater enthusiasm. From the application field’s point of view, a significant part of the book is devoted to conventional subjects in the field of inversion: biological and medical imaging, astronomy, non-destructive evaluation, processing of video sequences, target tracking, sensor networks and digital communications. The variety of chapters is also clear, when we examine the acquisition modalities at stake: conventional modalities, such as tomography and NMR, visible or infrared optical imaging, or more recent modalities such as atomic force imaging and polarized light imaging.

Bayesian Methods for Inverse Problems in Signal and Image Processing

Bayesian Methods for Inverse Problems in Signal and Image Processing
Author: Yosra Marnissi
Publisher:
Total Pages: 0
Release: 2017
Genre:
ISBN:

Download Bayesian Methods for Inverse Problems in Signal and Image Processing Book in PDF, Epub and Kindle

Bayesian approaches are widely used in signal processing applications. In order to derive plausible estimates of original parameters from their distorted observations, they rely on the posterior distribution that incorporates prior knowledge about the unknown parameters as well as informations about the observations. The posterior mean estimator is one of the most commonly used inference rule. However, as the exact posterior distribution is very often intractable, one has to resort to some Bayesian approximation tools to approximate it. In this work, we are mainly interested in two particular Bayesian methods, namely Markov Chain Monte Carlo (MCMC) sampling algorithms and Variational Bayes approximations (VBA).This thesis is made of two parts. The first one is dedicated to sampling algorithms. First, a special attention is devoted to the improvement of MCMC methods based on the discretization of the Langevin diffusion. We propose a novel method for tuning the directional component of such algorithms using a Majorization-Minimization strategy with guaranteed convergence properties.Experimental results on the restoration of a sparse signal confirm the performance of this new approach compared with the standard Langevin sampler. Second, a new sampling algorithm based on a Data Augmentation strategy, is proposed to improve the convergence speed and the mixing properties of standard MCMC sampling algorithms. Our methodological contributions are validated on various applications in image processing showing the great potentiality of the proposed method to manage problems with heterogeneous correlations between the signal coefficients.In the second part, we propose to resort to VBA techniques to build a fast estimation algorithm for restoring signals corrupted with non-Gaussian noise. In order to circumvent the difficulties raised by the intricate form of the true posterior distribution, a majorization technique is employed to approximate either the data fidelity term or the prior density. Thanks to its flexibility, the proposed approach can be applied to a broad range of data fidelity terms allowing us to estimate the target signal jointly with the associated regularization parameter. Illustration of this approach through examples of image deconvolution in the presence of mixed Poisson-Gaussian noise, show the good performance of the proposed algorithm compared with state of the art supervised methods.

Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing

Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing
Author: Jean-Francois Giovannelli
Publisher: John Wiley & Sons
Total Pages: 322
Release: 2015-02-16
Genre: Technology & Engineering
ISBN: 1848216378

Download Regularization and Bayesian Methods for Inverse Problems in Signal and Image Processing Book in PDF, Epub and Kindle

The focus of this book is on "ill-posed inverse problems". These problems cannot be solved only on the basis of observed data. The building of solutions involves the recognition of other pieces of a priori information. These solutions are then specific to the pieces of information taken into account. Clarifying and taking these pieces of information into account is necessary for grasping the domain of validity and the field of application for the solutions built. For too long, the interest in these problems has remained very limited in the signal-image community. However, the community has since recognized that these matters are more interesting and they have become the subject of much greater enthusiasm. From the application field’s point of view, a significant part of the book is devoted to conventional subjects in the field of inversion: biological and medical imaging, astronomy, non-destructive evaluation, processing of video sequences, target tracking, sensor networks and digital communications. The variety of chapters is also clear, when we examine the acquisition modalities at stake: conventional modalities, such as tomography and NMR, visible or infrared optical imaging, or more recent modalities such as atomic force imaging and polarized light imaging.

Bayesian Approach to Inverse Problems

Bayesian Approach to Inverse Problems
Author: Jérôme Idier
Publisher: John Wiley & Sons
Total Pages: 322
Release: 2013-03-01
Genre: Mathematics
ISBN: 111862369X

Download Bayesian Approach to Inverse Problems Book in PDF, Epub and Kindle

Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.

Bayesian Inference for Inverse Problems

Bayesian Inference for Inverse Problems
Author: Ali Mohammad-Djafari
Publisher: SPIE-International Society for Optical Engineering
Total Pages: 396
Release: 1998
Genre: Mathematics
ISBN:

Download Bayesian Inference for Inverse Problems Book in PDF, Epub and Kindle

Numerical Bayesian Methods Applied to Signal Processing

Numerical Bayesian Methods Applied to Signal Processing
Author: Joseph J.K. O Ruanaidh
Publisher: Springer Science & Business Media
Total Pages: 256
Release: 2012-12-06
Genre: Computers
ISBN: 1461207177

Download Numerical Bayesian Methods Applied to Signal Processing Book in PDF, Epub and Kindle

This book is concerned with the processing of signals that have been sam pled and digitized. The fundamental theory behind Digital Signal Process ing has been in existence for decades and has extensive applications to the fields of speech and data communications, biomedical engineering, acous tics, sonar, radar, seismology, oil exploration, instrumentation and audio signal processing to name but a few [87]. The term "Digital Signal Processing", in its broadest sense, could apply to any operation carried out on a finite set of measurements for whatever purpose. A book on signal processing would usually contain detailed de scriptions of the standard mathematical machinery often used to describe signals. It would also motivate an approach to real world problems based on concepts and results developed in linear systems theory, that make use of some rather interesting properties of the time and frequency domain representations of signals. While this book assumes some familiarity with traditional methods the emphasis is altogether quite different. The aim is to describe general methods for carrying out optimal signal processing.

Bayesian Inverse Problems

Bayesian Inverse Problems
Author: Juan Chiachio-Ruano
Publisher: CRC Press
Total Pages: 289
Release: 2021-11-10
Genre: Mathematics
ISBN: 1351869655

Download Bayesian Inverse Problems Book in PDF, Epub and Kindle

This book is devoted to a special class of engineering problems called Bayesian inverse problems. These problems comprise not only the probabilistic Bayesian formulation of engineering problems, but also the associated stochastic simulation methods needed to solve them. Through this book, the reader will learn how this class of methods can be useful to rigorously address a range of engineering problems where empirical data and fundamental knowledge come into play. The book is written for a non-expert audience and it is contributed to by many of the most renowned academic experts in this field.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging
Author: Otmar Scherzer
Publisher: Springer Science & Business Media
Total Pages: 1626
Release: 2010-11-23
Genre: Mathematics
ISBN: 0387929193

Download Handbook of Mathematical Methods in Imaging Book in PDF, Epub and Kindle

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Regularization of Inverse Problems

Regularization of Inverse Problems
Author: Heinz Werner Engl
Publisher: Springer Science & Business Media
Total Pages: 348
Release: 1996-07-31
Genre: Mathematics
ISBN: 9780792341574

Download Regularization of Inverse Problems Book in PDF, Epub and Kindle

This book is devoted to the mathematical theory of regularization methods and gives an account of the currently available results about regularization methods for linear and nonlinear ill-posed problems. Both continuous and iterative regularization methods are considered in detail with special emphasis on the development of parameter choice and stopping rules which lead to optimal convergence rates.