Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments

Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments
Author: Kristoffer Bergman
Publisher: Linköping University Electronic Press
Total Pages: 60
Release: 2021-03-16
Genre: Electronic books
ISBN: 9179296777

Download Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments Book in PDF, Epub and Kindle

During the last decades, motion planning for autonomous systems has become an important area of research. The high interest is not the least due to the development of systems such as self-driving cars, unmanned aerial vehicles and robotic manipulators. The objective in optimal motion planning problems is to find feasible motion plans that also optimize a performance measure. From a control perspective, the problem is an instance of an optimal control problem. This thesis addresses optimal motion planning problems for complex dynamical systems that operate in unstructured environments, where no prior reference such as road-lane information is available. Some example scenarios are autonomous docking of vessels in harbors and autonomous parking of self-driving tractor-trailer vehicles at loading sites. The focus is to develop optimal motion planning algorithms that can reliably be applied to these types of problems. This is achieved by combining recent ideas from automatic control, numerical optimization and robotics. The first contribution is a systematic approach for computing local solutions to motion planning problems in challenging unstructured environments. The solutions are computed by combining homotopy methods and direct optimal control techniques. The general principle is to define a homotopy that transforms, or preferably relaxes, the original problem to an easily solved problem. The approach is demonstrated in motion planning problems in 2D and 3D environments, where the presented method outperforms a state-of-the-art asymptotically optimal motion planner based on random sampling. The second contribution is an optimization-based framework for automatic generation of motion primitives for lattice-based motion planners. Given a family of systems, the user only needs to specify which principle types of motions that are relevant for the considered system family. Based on the selected principle motions and a selected system instance, the framework computes a library of motion primitives by simultaneously optimizing the motions and the terminal states. The final contribution of this thesis is a motion planning framework that combines the strengths of sampling-based planners with direct optimal control in a novel way. The sampling-based planner is applied to the problem in a first step using a discretized search space, where the system dynamics and objective function are chosen to coincide with those used in a second step based on optimal control. This combination ensures that the sampling-based motion planner provides a feasible motion plan which is highly suitable as warm-start to the optimal control step. Furthermore, the second step is modified such that it also can be applied in a receding-horizon fashion, where the proposed combination of methods is used to provide theoretical guarantees in terms of recursive feasibility, worst-case objective function value and convergence to the terminal state. The proposed motion planning framework is successfully applied to several problems in challenging unstructured environments for tractor-trailer vehicles. The framework is also applied and tailored for maritime navigation for vessels in archipelagos and harbors, where it is able to compute energy-efficient trajectories which complies with the international regulations for preventing collisions at sea.

DHM2020

DHM2020
Author: L. Hanson
Publisher: IOS Press
Total Pages: 452
Release: 2020-09-11
Genre: Computers
ISBN: 1643681052

Download DHM2020 Book in PDF, Epub and Kindle

Digital human modeling (DHM) is an active field of research directed towards the goal of creating detailed digital models of the human body and its functions, as well as assessment methods for evaluating human interaction with products and production systems. These have many applications in ergonomics, design and engineering, in fields as diverse as the automotive industry and medicine. This book presents the proceedings of the 6th International Digital Human Modeling Symposium (DHM2020), held in Skövde, Sweden from 31 August to 2 September 2020. The conference was also accessible online for those unable to attend in person because of restrictions due to the Covid-19 pandemic. The symposium provides an international forum for researchers, developers and users to report their latest innovations, summarize new developments and experiences within the field, and exchange ideas, results and visions in all areas of DHM research and applications. The book contains the 43 papers accepted for presentation at the conference, and is divided into 6 sections which broadly reflect the topics covered: anthropometry; behavior and biomechanical modeling; human motion data collection and modeling; human-product interaction modeling; industry and user perspectives; and production planning and ergonomics evaluation. Providing a state-of-the-art overview of research and developments in digital human modeling, the book will be of interest to all those who are active in the field.

On Motion Planning Using Numerical Optimal Control

On Motion Planning Using Numerical Optimal Control
Author: Kristoffer Bergman
Publisher: Linköping University Electronic Press
Total Pages: 91
Release: 2019-05-28
Genre:
ISBN: 9176850579

Download On Motion Planning Using Numerical Optimal Control Book in PDF, Epub and Kindle

During the last decades, motion planning for autonomous systems has become an important area of research. The high interest is not the least due to the development of systems such as self-driving cars, unmanned aerial vehicles and robotic manipulators. In this thesis, the objective is not only to find feasible solutions to a motion planning problem, but solutions that also optimize some kind of performance measure. From a control perspective, the resulting problem is an instance of an optimal control problem. In this thesis, the focus is to further develop optimal control algorithms such that they be can used to obtain improved solutions to motion planning problems. This is achieved by combining ideas from automatic control, numerical optimization and robotics. First, a systematic approach for computing local solutions to motion planning problems in challenging environments is presented. The solutions are computed by combining homotopy methods and numerical optimal control techniques. The general principle is to define a homotopy that transforms, or preferably relaxes, the original problem to an easily solved problem. The approach is demonstrated in motion planning problems in 2D and 3D environments, where the presented method outperforms both a state-of-the-art numerical optimal control method based on standard initialization strategies and a state-of-the-art optimizing sampling-based planner based on random sampling. Second, a framework for automatically generating motion primitives for lattice-based motion planners is proposed. Given a family of systems, the user only needs to specify which principle types of motions that are relevant for the considered system family. Based on the selected principle motions and a selected system instance, the algorithm not only automatically optimizes the motions connecting pre-defined boundary conditions, but also simultaneously optimizes the terminal state constraints as well. In addition to handling static a priori known system parameters such as platform dimensions, the framework also allows for fast automatic re-optimization of motion primitives if the system parameters change while the system is in use. Furthermore, the proposed framework is extended to also allow for an optimization of discretization parameters, that are are used by the lattice-based motion planner to define a state-space discretization. This enables an optimized selection of these parameters for a specific system instance. Finally, a unified optimization-based path planning approach to efficiently compute locally optimal solutions to advanced path planning problems is presented. The main idea is to combine the strengths of sampling-based path planners and numerical optimal control. The lattice-based path planner is applied to the problem in a first step using a discretized search space, where system dynamics and objective function are chosen to coincide with those used in a second numerical optimal control step. This novel tight combination of a sampling-based path planner and numerical optimal control makes, in a structured way, benefit of the former method’s ability to solve combinatorial parts of the problem and the latter method’s ability to obtain locally optimal solutions not constrained to a discretized search space. The proposed approach is shown in several practically relevant path planning problems to provide improvements in terms of computation time, numerical reliability, and objective function value.

Fundamentals of Multibody Dynamics

Fundamentals of Multibody Dynamics
Author: Farid Amirouche
Publisher: Springer Science & Business Media
Total Pages: 692
Release: 2007-05-24
Genre: Technology & Engineering
ISBN: 0817644067

Download Fundamentals of Multibody Dynamics Book in PDF, Epub and Kindle

This textbook – a result of the author’s many years of research and teaching – brings together diverse concepts of the versatile tool of multibody dynamics, combining the efforts of many researchers in the field of mechanics.

Handbook of Digital Human Modeling

Handbook of Digital Human Modeling
Author: Vincent G. Duffy
Publisher: CRC Press
Total Pages: 1034
Release: 2016-04-19
Genre: Computers
ISBN: 1420063529

Download Handbook of Digital Human Modeling Book in PDF, Epub and Kindle

The rapid introduction of sophisticated computers, services, telecommunications systems, and manufacturing systems has caused a major shift in the way people use and work with technology. It is not surprising that computer-aided modeling has emerged as a promising method for ensuring products meet the requirements of the consumer. The Handbook of D

Modeling, Simulation and Optimization of Bipedal Walking

Modeling, Simulation and Optimization of Bipedal Walking
Author: Katja Mombaur
Publisher: Springer Science & Business Media
Total Pages: 289
Release: 2013-02-28
Genre: Technology & Engineering
ISBN: 3642363687

Download Modeling, Simulation and Optimization of Bipedal Walking Book in PDF, Epub and Kindle

The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired control algorithms for bipedal walking Generation and deformation of natural walking in computer graphics Imitation of human motions on humanoids Emotional body language during walking Simulation of biologically inspired actuators for bipedal walking machines Modeling and simulation techniques for the development of prostheses Functional electrical stimulation of walking.

Digital Factory for Human-oriented Production Systems

Digital Factory for Human-oriented Production Systems
Author: Luca Canetta
Publisher: Springer Science & Business Media
Total Pages: 313
Release: 2011-07-10
Genre: Technology & Engineering
ISBN: 1849961727

Download Digital Factory for Human-oriented Production Systems Book in PDF, Epub and Kindle

Digital factory is a comprehensive approach providing methodologies, models and tools that support manufacturing enterprises in the rearrangement of their organizational structures to deal with expected changes in manufacturing processes and markets. Digital Factory for Human-oriented Production Systems investigates the impact of the digital factory through a consideration of the entire product/process lifecycle, and the broad network of product engineering, material and component suppliers, manufacturing equipment suppliers, and customers involved in current and next generation manufacturing. It covers the utilization and integration of: human body ergonomics models; production system discrete event simulation; 3D/virtual and augmented reality visualization; collaborative design tools; automatic data capture; and knowledge management systems based on semantic web ontologies integrated by a continuous data management. The coverage of various types of factory and manufacturing phases, representations and simulations allows researchers in academia and industry to perform a dynamic analysis and up-to-date modeling of the processes involved. Digital Factory for Human-oriented Production Systems describes the tools that allow a move towards the integrated digital factory and underlines the business impact that companies can obtain by adopting these tools. As well as benefiting international organizations, the proposed methodologies and technologies have also been developed in order to facilitate their adoption by small or medium-sized businesses, making them relevant to all product engineers and managers who want improve the efficiency and effectiveness of their enterprises.

Human Motion Simulation

Human Motion Simulation
Author: Karim Abdel-Malek
Publisher: Academic Press
Total Pages: 296
Release: 2013-05-30
Genre: Computers
ISBN: 0124046010

Download Human Motion Simulation Book in PDF, Epub and Kindle

Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an innovative optimization-based approach to predicting human movement Extensively illustrated with 3D images of simulated human motion (full color in the ebook version)

Geometric and Numerical Foundations of Movements

Geometric and Numerical Foundations of Movements
Author: Jean-Paul Laumond
Publisher: Springer
Total Pages: 417
Release: 2017-05-02
Genre: Technology & Engineering
ISBN: 3319515470

Download Geometric and Numerical Foundations of Movements Book in PDF, Epub and Kindle

This book aims at gathering roboticists, control theorists, neuroscientists, and mathematicians, in order to promote a multidisciplinary research on movement analysis. It follows the workshop “ Geometric and Numerical Foundations of Movements ” held at LAAS-CNRS in Toulouse in November 2015[1]. Its objective is to lay the foundations for a mutual understanding that is essential for synergetic development in motion research. In particular, the book promotes applications to robotics --and control in general-- of new optimization techniques based on recent results from real algebraic geometry.