Geologic Carbon Sequestration

Geologic Carbon Sequestration
Author: V. Vishal
Publisher: Springer
Total Pages: 336
Release: 2016-05-11
Genre: Science
ISBN: 3319270192

Download Geologic Carbon Sequestration Book in PDF, Epub and Kindle

This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Chemical Reactor Modeling

Chemical Reactor Modeling
Author: Hugo A. Jakobsen
Publisher: Springer Science & Business Media
Total Pages: 1244
Release: 2008-10-15
Genre: Technology & Engineering
ISBN: 3540686223

Download Chemical Reactor Modeling Book in PDF, Epub and Kindle

This book closes the gap between Chemical Reaction Engineering and Fluid Mechanics. It provides the basic theory for momentum, heat and mass transfer in reactive systems. Numerical methods for solving the resulting equations as well as the interplay between physical and numerical modes are discussed. The book is written using the standard terminology of this community. It is intended for researchers and engineers who want to develop their own codes, or who are interested in a deeper insight into commercial CFD codes in order to derive consistent extensions and to overcome "black box" practice. It can also serve as a textbook and reference book.

Chemical Reactor Modeling

Chemical Reactor Modeling
Author: Hugo A. Jakobsen
Publisher: Springer Science & Business Media
Total Pages: 1589
Release: 2014-04-02
Genre: Technology & Engineering
ISBN: 3319050923

Download Chemical Reactor Modeling Book in PDF, Epub and Kindle

Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.

Groundwater Reactive Transport Models

Groundwater Reactive Transport Models
Author: Gour-Tsyh (George) Yeh
Publisher:
Total Pages: 256
Release: 2012-03-15
Genre: Groundwater
ISBN: 9781608055258

Download Groundwater Reactive Transport Models Book in PDF, Epub and Kindle

Ground water reactive transport models are useful to assess and quantify contaminant precipitation, absorption and migration in subsurface media. Many ground water reactive transport models available today are characterized by varying complexities, strengths, and weaknesses. Selecting accurate, efficient models can be a challenging task. This book addresses the needs, issues and challenges relevant to selecting a ground water reactive transport model to evaluate natural attenuation and alternative remediation schemes. It should serve as a handy guide for water resource managers seeking to achieve economically feasible results.

Reactive Transport in Porous Media

Reactive Transport in Porous Media
Author: Peter C. Lichtner
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 452
Release: 2018-12-17
Genre: Science
ISBN: 1501509799

Download Reactive Transport in Porous Media Book in PDF, Epub and Kindle

Volume 34 of Reviews in Mineralogy focuses on methods to describe the extent and consequences of reactive flow and transport in natural subsurface systems. Since the field of reactive transport within the Earth Sciences is a highly multidisciplinary area of research, including geochemistry, geology, physics, chemistry, hydrology, and engineering, this book is an attempt to some extent bridge the gap between these different disciplines. This volume contains the contributions presented at a short course held in Golden, Colorado, October 25-27, 1996 in conjunction with the Mineralogical Society of America's (MSA) Annual Meeting with the Geological Society of America in Denver, Colorado.

TOUGHREACT User's Guide

TOUGHREACT User's Guide
Author:
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download TOUGHREACT User's Guide Book in PDF, Epub and Kindle

Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured and porous media, and (5) porosity, permeability, and capillary pressure changes owing to mineral precipitation/dissolution (Sonnenthal et al., 1998, 2000, 2001; Spycher et al., 2003a). Subsequently, TOUGH2 V2 was released with additional EOS modules and features (Pruess et al., 1999). The present version of TOUGHREACT includes all of the previous extensions to the original version, along with the replacement of the original TOUGH2 (Pruess, 1991) by TOUGH2 V2 (Pruess et al., 1999). TOUGHREACT has been applied to a wide variety of problems, some of which are included as examples, such as: (1) Supergene copper enrichment (Xu et al., 2001); (2) Mineral alteration in hydrothermal systems (Xu and Pruess, 2001a; Xu et al., 2004b; Dobson et al., 2004); (3) Mineral trapping for CO2 disposal in deep saline aquifers (Xu et al., 2003b and 2004a); (4) Coupled thermal, hydrological, and chemical processes in boiling unsaturated tuff for the proposed nuclear waste emplacement site at Yucca Mountain, Nevada (Sonnenthal et al., 1998, 2001; Sonnenthal and Spycher, 2000; Spycher et al., 2003a, b; Xu et al., 2001); (5) Modeling of mineral precipitation/dissolution in plug-flow and fracture-flow experiments under boiling conditions (Dobson et al., 2003); (6) Calcite precipitation in the vadose zone as a function of net infiltration (Xu et al., 2003); and (7) Stable isotope fractionation in unsaturated zone pore water and vapor (Singleton et al., 2004). The TOUGHREACT program makes use of 'self-documenting' features. It is distributed with a number of input data files for sample problems. Besides providing benchmarks for proper code installation, these can serve as a self-teaching tutorial in the use of TOUGHREACT, and they provide templates to help jump-start new applications. The fluid and heat flow part of TOUGHREACT is derived from TOUGH2 V2, so in addition to the current manual, users must have the manual of the TOUGH2 V2 (Pruess et al., 1999). The present version of TOUGHREACT provides the following TOUGH2 fluid property or 'EOS' (equation-of-state) modules: (1) EOS1 for water, or two waters with typical applications to hydrothermal problems, (2) EOS2 for multiphase mixtures of water and CO2 also with typical applications to hydrothermal problems, (3) EOS3 for multiphase mixtures of water and air with typical applications to vadose zone and nuclear waste disposal problems, (4) EOS4 that has the same capabilities as EOS3 but with vapor pressure lowering effects due to capillary pressure, (5) EOS9 for single phase water (Richards equation) with typical applications to ambient temperature and pressure reactive geochemical transport problems, and (6) ECO2N for multiphase mixtures of water, CO2 and NaCl with typical applications to CO2 disposal in deep brine aquifers.

Reactive Transport in Natural and Engineered Systems

Reactive Transport in Natural and Engineered Systems
Author: Jennifer Druhan
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 514
Release: 2020-03-04
Genre: Science
ISBN: 1501512005

Download Reactive Transport in Natural and Engineered Systems Book in PDF, Epub and Kindle

Open system behavior is predicated on a fundamental relationship between the timescale over which mass is transported and the timescale over which it is chemically transformed. This relationship describes the basis for the multidisciplinary field of reactive transport (RT). In the 20 years since publication of Review in Mineralogy and Geochemistry volume 34: Reactive Transport in Porous Media, RT principles have expanded beyond early applications largely based in contaminant hydrology to become broadly utilized throughout the Earth Sciences. RT is now employed to address a wide variety of natural and engineered systems across diverse spatial and temporal scales, in tandem with advances in computational capability, quantitative imaging and reactive interface characterization techniques. The present volume reviews the diversity of reactive transport applications developed over the past 20 years, ranging from the understanding of basic processes at the nano- to micrometer scale to the prediction of Earth global cycling processes at the watershed scale. Key areas of RT development are highlighted to continue advancing our capabilities to predict mass and energy transfer in natural and engineered systems.

Ground Water Reactive Transport Model: Cover Page; 03 REVISED eBooks End User License Agreement-Website; 04 Contents; 05 Foreword_czheng; 06 Preface; 07 Contributors; 08 Chapter 1_Yeh et al_HYDROGEOCHEMA; 09 Chapter 2_Wheeler et al_IPARS-FINAL; 10 Chapter 3_Xu et al-revised-_TOUGHREACT; 11 Chapter 4_Clement et al_RT3D; 12 Chapter 5_White et al_STOMP-ECKEChem; 13 Chapter 6_Hammond et al_PFLOTRAN; 14 Chapter 7_ Samper et al_CORE2D V4; 15 Chapter 8_ Mayer et al_MIN3P; 16 Chapter 9_ Hao et al_NUFT; 17 Index

Ground Water Reactive Transport Model: Cover Page; 03 REVISED eBooks End User License Agreement-Website; 04 Contents; 05 Foreword_czheng; 06 Preface; 07 Contributors; 08 Chapter 1_Yeh et al_HYDROGEOCHEMA; 09 Chapter 2_Wheeler et al_IPARS-FINAL; 10 Chapter 3_Xu et al-revised-_TOUGHREACT; 11 Chapter 4_Clement et al_RT3D; 12 Chapter 5_White et al_STOMP-ECKEChem; 13 Chapter 6_Hammond et al_PFLOTRAN; 14 Chapter 7_ Samper et al_CORE2D V4; 15 Chapter 8_ Mayer et al_MIN3P; 16 Chapter 9_ Hao et al_NUFT; 17 Index
Author: Fan Zhang
Publisher: Bentham Science Publishers
Total Pages: 254
Release: 2012
Genre: Science
ISBN: 1608053067

Download Ground Water Reactive Transport Model: Cover Page; 03 REVISED eBooks End User License Agreement-Website; 04 Contents; 05 Foreword_czheng; 06 Preface; 07 Contributors; 08 Chapter 1_Yeh et al_HYDROGEOCHEMA; 09 Chapter 2_Wheeler et al_IPARS-FINAL; 10 Chapter 3_Xu et al-revised-_TOUGHREACT; 11 Chapter 4_Clement et al_RT3D; 12 Chapter 5_White et al_STOMP-ECKEChem; 13 Chapter 6_Hammond et al_PFLOTRAN; 14 Chapter 7_ Samper et al_CORE2D V4; 15 Chapter 8_ Mayer et al_MIN3P; 16 Chapter 9_ Hao et al_NUFT; 17 Index Book in PDF, Epub and Kindle

Ground water reactive transport models are useful to assess and quantify contaminant precipitation, absorption and migration in subsurface media. Many ground water reactive transport models available today are characterized by varying complexities, strengths, and weaknesses. Selecting accurate, efficient models can be a challenging task. This ebook addresses the needs, issues and challenges relevant to selecting a ground water reactive transport model to evaluate natural attenuation and alternative remediation schemes. It should serve as a handy guide for water resource managers seeking to ach.