Rare Event Simulation using Monte Carlo Methods

Rare Event Simulation using Monte Carlo Methods
Author: Gerardo Rubino
Publisher: John Wiley & Sons
Total Pages: 278
Release: 2009-03-18
Genre: Mathematics
ISBN: 9780470745410

Download Rare Event Simulation using Monte Carlo Methods Book in PDF, Epub and Kindle

In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. Graduate students, researchers and practitioners who wish to learn and apply rare event simulation techniques will find this book beneficial.

Fast Simulation of Rare Events in Markov Level/phase Processes

Fast Simulation of Rare Events in Markov Level/phase Processes
Author:
Publisher:
Total Pages:
Release: 2004
Genre:
ISBN:

Download Fast Simulation of Rare Events in Markov Level/phase Processes Book in PDF, Epub and Kindle

Methods of efficient Monte-Carlo simulation when rare events are involved have been studied for several decades. Rare events are very important in the context of evaluating high quality computer/communication systems. Meanwhile, the efficient simulation of systems involving rare events poses great challenges. A simulation method is said to be efficient if the number of replicas required to get accurate estimates grows slowly, compared to the rate at which the probability of the rare event approaches zero. Despite the great success of the two mainstream methods, importance sampling (IS) and importance splitting, either of them can become inefficient under certain conditions, as reported in some recent studies. The purpose of this study is to look for possible enhancement of fast simulation methods. I focus on the ``level/phase process', a Markov process in which the level and the phase are two state variables. Furthermore, changes of level and phase are induced by events, which have rates that are independent of the level except at a boundary. For such a system, the event of reaching a high level occurs rarely, provided the system typically stays at lower levels. The states at those high levels constitute the rare event set. Though simple, this models a variety of applications involving rare events. In this setting, I have studied two efficient simulation methods, the rate tilting method and the adaptive splitting method, concerning their efficiencies. I have compared the efficiency of rate tilting with several previously used similar methods. The experiments are done by using queues in tandem, an often used test bench for the rare event simulation. The schema of adaptive splitting has not been described in literature. For this method, I have analyzed its efficiency to show its superiority over the (conventional) splitting method. The way that a system approaches a designated rare event set is called the system's large deviation behavior. Toward the end of gaining in.

A Coupling Approach to Rare Event Simulation Via Dynamic Importance Sampling

A Coupling Approach to Rare Event Simulation Via Dynamic Importance Sampling
Author: Benjamin Jiahong Zhang
Publisher:
Total Pages: 109
Release: 2017
Genre:
ISBN:

Download A Coupling Approach to Rare Event Simulation Via Dynamic Importance Sampling Book in PDF, Epub and Kindle

Rare event simulation involves using Monte Carlo methods to estimate probabilities of unlikely events and to understand the dynamics of a system conditioned on a rare event. An established class of algorithms based on large deviations theory and control theory constructs provably asymptotically efficient importance sampling estimators. Dynamic importance sampling is one these algorithms in which the choice of biasing distribution adapts in the course of a simulation according to the solution of an Isaacs partial differential equation or by solving a sequence of variational problems. However, obtaining the solution of either problem may be expensive, where the cost of solving these problems may be even more expensive than performing simple Monte Carlo exhaustively. Deterministic couplings induced by transport maps allows one to relate a complex probability distribution of interest to a simple reference distribution (e.g. a standard Gaussian) through a monotone, invertible function. This diverts the complexity of the distribution of interest into a transport map. We extend the notion of transport maps between probability distributions on Euclidean space to probability distributions on path space following a similar procedure to Itô’s coupling. The contraction principle is a key concept from large deviations theory that allows one to relate large deviations principles of different systems through deterministic couplings. We convey that with the ability to computationally construct transport maps, we can leverage the contraction principle to reformulate the sequence of variational problems required to implement dynamic importance sampling and make computation more amenable. We apply this approach to simple rotorcraft models. We conclude by outlining future directions of research such as using the coupling interpretation to accelerate rare event simulation via particle splitting, using transport maps to learn large deviations principles, and accelerating inference of rare events.

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation
Author: James Bucklew
Publisher: Springer Science & Business Media
Total Pages: 262
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475740786

Download Introduction to Rare Event Simulation Book in PDF, Epub and Kindle

This book presents a unified theory of rare event simulation and the variance reduction technique known as importance sampling from the point of view of the probabilistic theory of large deviations. It allows us to view a vast assortment of simulation problems from a unified single perspective.

Monte Carlo Simulation and Finance

Monte Carlo Simulation and Finance
Author: Don L. McLeish
Publisher: John Wiley & Sons
Total Pages: 308
Release: 2011-09-13
Genre: Business & Economics
ISBN: 1118160940

Download Monte Carlo Simulation and Finance Book in PDF, Epub and Kindle

Monte Carlo methods have been used for decades in physics, engineering, statistics, and other fields. Monte Carlo Simulation and Finance explains the nuts and bolts of this essential technique used to value derivatives and other securities. Author and educator Don McLeish examines this fundamental process, and discusses important issues, including specialized problems in finance that Monte Carlo and Quasi-Monte Carlo methods can help solve and the different ways Monte Carlo methods can be improved upon. This state-of-the-art book on Monte Carlo simulation methods is ideal for finance professionals and students. Order your copy today.

Feynman-Kac Formulae

Feynman-Kac Formulae
Author: Pierre Del Moral
Publisher: Springer Science & Business Media
Total Pages: 567
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468493930

Download Feynman-Kac Formulae Book in PDF, Epub and Kindle

This text takes readers in a clear and progressive format from simple to recent and advanced topics in pure and applied probability such as contraction and annealed properties of non-linear semi-groups, functional entropy inequalities, empirical process convergence, increasing propagations of chaos, central limit, and Berry Esseen type theorems as well as large deviation principles for strong topologies on path-distribution spaces. Topics also include a body of powerful branching and interacting particle methods.

Monte Carlo and Quasi-Monte Carlo Sampling

Monte Carlo and Quasi-Monte Carlo Sampling
Author: Christiane Lemieux
Publisher: Springer Science & Business Media
Total Pages: 373
Release: 2009-04-03
Genre: Mathematics
ISBN: 038778165X

Download Monte Carlo and Quasi-Monte Carlo Sampling Book in PDF, Epub and Kindle

Quasi–Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitioners and researchers from various disciplines currently contribute. This book presents essential tools for using quasi–Monte Carlo sampling in practice. The first part of the book focuses on issues related to Monte Carlo methods—uniform and non-uniform random number generation, variance reduction techniques—but the material is presented to prepare the readers for the next step, which is to replace the random sampling inherent to Monte Carlo by quasi–random sampling. The second part of the book deals with this next step. Several aspects of quasi-Monte Carlo methods are covered, including constructions, randomizations, the use of ANOVA decompositions, and the concept of effective dimension. The third part of the book is devoted to applications in finance and more advanced statistical tools like Markov chain Monte Carlo and sequential Monte Carlo, with a discussion of their quasi–Monte Carlo counterpart. The prerequisites for reading this book are a basic knowledge of statistics and enough mathematical maturity to follow through the various techniques used throughout the book. This text is aimed at graduate students in statistics, management science, operations research, engineering, and applied mathematics. It should also be useful to practitioners who want to learn more about Monte Carlo and quasi–Monte Carlo methods and researchers interested in an up-to-date guide to these methods.

Financial Modeling with Crystal Ball and Excel

Financial Modeling with Crystal Ball and Excel
Author: John Charnes
Publisher: John Wiley & Sons
Total Pages: 449
Release: 2011-08-04
Genre: Business & Economics
ISBN: 1118161130

Download Financial Modeling with Crystal Ball and Excel Book in PDF, Epub and Kindle

Praise for Financial Modeling with Crystal Ball(r) and Excel(r) "Professor Charnes's book drives clarity into applied Monte Carlo analysis using examples and tools relevant to real-world finance. The book will prove useful for analysts of all levels and as a supplement to academic courses in multiple disciplines." -Mark Odermann, Senior Financial Analyst, Microsoft "Think you really know financial modeling? This is a must-have for power Excel users. Professor Charnes shows how to make more realistic models that result in fewer surprises. Every analyst needs this credibility booster." -James Franklin, CEO, Decisioneering, Inc. "This book packs a first-year MBA's worth of financial and business modeling education into a few dozen easy-to-understand examples. Crystal Ball software does the housekeeping, so readers can concentrate on the business decision. A careful reader who works the examples on a computer will master the best general-purpose technology available for working with uncertainty." -Aaron Brown, Executive Director, Morgan Stanley, author of The Poker Face of Wall Street "Using Crystal Ball and Excel, John Charnes takes you step by step, demonstrating a conceptual framework that turns static Excel data and financial models into true risk models. I am astonished by the clarity of the text and the hands-on, step-by-step examples using Crystal Ball and Excel; Professor Charnes is a masterful teacher, and this is an absolute gem of a book for the new generation of analyst." -Brian Watt, Chief Operating Officer, GECC, Inc. "Financial Modeling with Crystal Ball and Excel is a comprehensive, well-written guide to one of the most useful analysis tools available to professional risk managers and quantitative analysts. This is a must-have book for anyone using Crystal Ball, and anyone wanting an overview of basic risk management concepts." -Paul Dietz, Manager, Quantitative Analysis, Westar Energy "John Charnes presents an insightful exploration of techniques for analysis and understanding of risk and uncertainty in business cases. By application of real options theory and Monte Carlo simulation to planning, doors are opened to analysis of what used to be impossible, such as modeling the value today of future project choices." -Bruce Wallace, Nortel