Semiconductor Nanostructures

Semiconductor Nanostructures
Author: Thomas Ihn
Publisher: Oxford University Press
Total Pages: 569
Release: 2010
Genre: Language Arts & Disciplines
ISBN: 019953442X

Download Semiconductor Nanostructures Book in PDF, Epub and Kindle

This introduction to the physics of semiconductor nanostructures and their transport properties emphasizes five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect and the Coulomb blockade effect.

Theory of Transport Properties of Semiconductor Nanostructures

Theory of Transport Properties of Semiconductor Nanostructures
Author: Eckehard Schöll
Publisher: Springer Science & Business Media
Total Pages: 394
Release: 2013-11-27
Genre: Technology & Engineering
ISBN: 1461558077

Download Theory of Transport Properties of Semiconductor Nanostructures Book in PDF, Epub and Kindle

Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures
Author: Thomas Ihn
Publisher: Springer
Total Pages: 270
Release: 2004-09-09
Genre: Science
ISBN: 0387218289

Download Electronic Quantum Transport in Mesoscopic Semiconductor Structures Book in PDF, Epub and Kindle

Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.

Transport in Nanostructures

Transport in Nanostructures
Author: David K. Ferry
Publisher: Cambridge University Press
Total Pages: 671
Release: 2009-08-20
Genre: Science
ISBN: 0521877482

Download Transport in Nanostructures Book in PDF, Epub and Kindle

The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Advanced Physics of Electron Transport in Semiconductors and Nanostructures

Advanced Physics of Electron Transport in Semiconductors and Nanostructures
Author: Massimo V. Fischetti
Publisher: Springer
Total Pages: 481
Release: 2016-05-20
Genre: Technology & Engineering
ISBN: 3319011014

Download Advanced Physics of Electron Transport in Semiconductors and Nanostructures Book in PDF, Epub and Kindle

This textbook is aimed at second-year graduate students in Physics, Electrical Engineering, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.

Introduction to Nanoelectronics

Introduction to Nanoelectronics
Author: Vladimir V. Mitin
Publisher: Cambridge University Press
Total Pages: 346
Release: 2008
Genre: Technology & Engineering
ISBN: 0521881722

Download Introduction to Nanoelectronics Book in PDF, Epub and Kindle

A comprehensive textbook on nanoelectronics covering the underlying physics, nanostructures, nanomaterials and nanodevices.