Quantum Trajectories of a Superconducting Qubit

Quantum Trajectories of a Superconducting Qubit
Author: Steven Joseph Weber
Publisher:
Total Pages: 147
Release: 2014
Genre:
ISBN:

Download Quantum Trajectories of a Superconducting Qubit Book in PDF, Epub and Kindle

In quantum mechanics, the process of measurement is intrinsically probabilistic. As a result, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. An accurate measurement record documents this stochastic evolution and can be used to reconstruct the quantum trajectory of the system state in a single experimental iteration. We use weak measurements to track the individual quantum trajectories of a superconducting qubit that evolves under the competing influences of continuous weak measurement and Rabi drive. We analyze large ensembles of such trajectories to examine their characteristics and determine their statistical properties. For example, by considering only the subset of trajectories that evolve between any chosen initial and final states, we can deduce the most probable path through quantum state space. Our investigation reveals the rich interplay between measurement dynamics, typically associated with wavefunction collapse, and unitary evolution. Our results provide insight into the dynamics of open quantum systems and may enable new methods of quantum state tomography, quantum state steering through measurement, and active quantum control.

Weak Measurement and Quantum Smoothing of a Superconducting Qubit

Weak Measurement and Quantum Smoothing of a Superconducting Qubit
Author: Dian Tan
Publisher:
Total Pages: 128
Release: 2017
Genre: Electronic dissertations
ISBN:

Download Weak Measurement and Quantum Smoothing of a Superconducting Qubit Book in PDF, Epub and Kindle

In quantum mechanics, the measurement outcome of an observable in a quantum system is intrinsically random, yielding a probability distribution. The state of the quantum system can be described by a density matrix (t), which depends on the information accumulated until time t, and represents our knowledge about the system. The density matrix (t) gives probabilities for the outcomes of measurements at time t. Further probing of the quantum system allows us to refine our prediction in hindsight. In this thesis, we experimentally examine a quantum smoothing theory in a superconducting qubit by introducing an auxiliary matrix E(t) which is conditioned on information obtained from time t to a final time T. With the complete information before and after time t, the pair of matrices [(t), E(t)] can be used to make smoothed predictions for the measurement outcome at time t. We apply the quantum smoothing theory in the case of continuous weak measurement unveiling the retrodicted quantum trajectories and weak values. In the case of strong projective measurement, while the density matrix (t) with only diagonal elements in a given basis |n > may be treated as a classical mixture, we demonstrate a failure of this classical mixture description in determining the smoothed probabilities for the measurement outcome at time t with both diagonal (t) and diagonal E(t). We study the correlations between quantum states and weak measurement signals and examine aspects of the time symmetry of continuous quantum measurement. We also extend our study of quantum smoothing theory to the case of resonance fluorescence of a superconducting qubit with homodyne measurement and observe some interesting effects such as the modification of the excited state probabilities, weak values, and evolution of the predicted and retrodicted trajectories.

Engineering Dissipation to Generate Entanglement Between Remote Superconducting Quantum Bits

Engineering Dissipation to Generate Entanglement Between Remote Superconducting Quantum Bits
Author: Mollie Elisheva Schwartz
Publisher:
Total Pages: 144
Release: 2016
Genre:
ISBN:

Download Engineering Dissipation to Generate Entanglement Between Remote Superconducting Quantum Bits Book in PDF, Epub and Kindle

Superconducting quantum circuits provide a promising avenue for scalable quantum computation and simulation. Their chief advantage is that, unlike physical atoms or electrons, these ``artificial atoms'' can be designed with nearly-arbitrarily large coupling to one another and to their electromagnetic environment. This strong coupling allows for fast quantum bit (qubit) operations, and for efficient readout. However, strong coupling comes at a price: a qubit that is strongly coupled to its environment is also strongly susceptible to losses and dissipation, as coherent information leaks from the quantum system under study into inaccessible ``bath'' modes. Extensive work in the field is dedicated to engineering away these losses to the extent possible, and to using error correction to undo the effects of losses that are unavoidable. This dissertation explores an alternate approach to dissipation: we study avenues by which dissipation itself can be used to generate, rather than destroy, quantum resources. We do so specifically in the context of quantum entanglement, one of the most important and most counter-intuitive aspects of quantum mechanics. Entanglement generation and stabilization is critical to most non-trivial implementations of quantum computing and quantum simulation, as it is the property that distinguishes a multi-qubit quantum system from a string of classical bits. The ability to harness dissipation to generate, purify, and stabilize entanglement is therefore highly desirable. We begin with an overview of quantum dissipation and measurement, followed by an introduction to entanglement and to the superconducting quantum information architecture. We then discuss three sets of experiments that highlight and explore the powerful uses of dissipation in quantum systems. First, we use an entangling measurement to probabilistically generate entanglement between two qubits separated by more than one meter of ordinary cable. This represents the first achievement of remote entanglement in a superconducting qubit system, which will be a critical capability as quantum computers and simulators scale. We then use a nearly-quantum limited amplifier to unravel individual quantum trajectories of the system under that entangling measurement, performing the first systematic exploration of entangled trajectories in any physical implementation. We finally demonstrate deterministic entanglement by engineering a lossy quantum environment to efficiently generate and stabilize entangled states with both frequency and symmetry selectivity. These experiments provide evidence that explicitly building dissipation into an engineered quantum system can enable, rather than hinder, the study of fundamental quantum mechanics and complex many-body Hamiltonians.

Superconducting Devices in Quantum Optics

Superconducting Devices in Quantum Optics
Author: Robert Hadfield
Publisher: Springer
Total Pages: 256
Release: 2016-02-29
Genre: Computers
ISBN: 3319240919

Download Superconducting Devices in Quantum Optics Book in PDF, Epub and Kindle

This book presents the basics and applications of superconducting devices in quantum optics. Over the past decade, superconducting devices have risen to prominence in the arena of quantum optics and quantum information processing. Superconducting detectors provide unparalleled performance for the detection of infrared photons in quantum cryptography, enable fundamental advances in quantum optics, and provide a direct route to on-chip optical quantum information processing. Superconducting circuits based on Josephson junctions provide a blueprint for scalable quantum information processing as well as opening up a new regime for quantum optics at microwave wavelengths. The new field of quantum acoustics allows the state of a superconducting qubit to be transmitted as a phonon excitation. This volume, edited by two leading researchers, provides a timely compilation of contributions from top groups worldwide across this dynamic field, anticipating future advances in this domain.

Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits

Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits
Author: Cécile Grèzes
Publisher: Springer
Total Pages: 240
Release: 2015-08-19
Genre: Computers
ISBN: 3319215728

Download Towards a Spin-Ensemble Quantum Memory for Superconducting Qubits Book in PDF, Epub and Kindle

This work describes theoretical and experimental advances towards the realization of a hybrid quantum processor in which the collective degrees of freedom of an ensemble of spins in a crystal are used as a multi-qubit register for superconducting qubits. A memory protocol made of write, read and reset operations is first presented, followed by the demonstration of building blocks of its implementation with NV center spins in diamond. Qubit states are written by resonant absorption of a microwave photon in the spin ensemble and read out of the memory on-demand by applying Hahn echo refocusing techniques to the spins. The reset step is implemented in between two successive write-read sequences using optical repumping of the spins.

Entanglement and Quantum Error Correction with Superconducting Qubits

Entanglement and Quantum Error Correction with Superconducting Qubits
Author: Matthew Reed
Publisher: Lulu.com
Total Pages: 384
Release: 2013
Genre: Science
ISBN: 1304084868

Download Entanglement and Quantum Error Correction with Superconducting Qubits Book in PDF, Epub and Kindle

Softcover version of 2013 Ph.D. thesis of Matthew David Reed presented to the Physics department of Yale University. Concerns the realization of quantum error correction in the circuit quantum electrodynamics architecture, a precursor to quantum computing.

Quantum Measurement

Quantum Measurement
Author: Andrew N. Jordan
Publisher: Cambridge University Press
Total Pages: 284
Release: 2024-02-15
Genre: Science
ISBN: 1009117548

Download Quantum Measurement Book in PDF, Epub and Kindle

This book adopts a novel, physics-first approach to quantum measurement, using physical experiments as the basis to describe the underlying mathematical formalism. Topics covered include weak measurements, quantum measurement reversal, quantum trajectories and the stochastic path integral formalism. The theory of quantum measurement is also covered in detail, including discussion of how it can be tested and demonstrated in a laboratory: how to build quantum-limited amplifiers, fundamental noise limits imposed on measurement by quantum mechanics, and the design of superconducting circuits. This text is an excellent introduction for students with a basic understanding of quantum mechanics wanting to learn more about measurement theory, and the inclusion of a wide selection of end-of-chapter exercises make this book ideal for emerging courses on the topic. Key chapters introducing the foundations of quantum computing and the history of measurement theory are equally accessible to a broader, less specialised audience.

Quantum Trajectories

Quantum Trajectories
Author: Pratim Kumar Chattaraj
Publisher: CRC Press
Total Pages: 412
Release: 2016-04-19
Genre: Mathematics
ISBN: 1439825629

Download Quantum Trajectories Book in PDF, Epub and Kindle

The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area o

Superconducting Qubit's Journey Through Quantum

Superconducting Qubit's Journey Through Quantum
Author: Amelia A Weaver
Publisher:
Total Pages: 0
Release: 2023-07-06
Genre: Science
ISBN: 9780798769259

Download Superconducting Qubit's Journey Through Quantum Book in PDF, Epub and Kindle

The initial observations which motived the theory of quantum mechanics, and later the wide body of results which helped to solidify the theory, were based on experiments performed on large ensembles of quantum systems, such as atoms and photons. In quantum theory, the basic mathematical object describing the state of a physical system, the wave function evolves deterministically in time with dynamics governed by the Schrödinger equation. When observing some physical property of the system, the wavefunction describes the probability that a measurement of an individual quantum system within an ensemble of identically prepared systems will yield a particular measurement result.

Thermodynamics in the Quantum Regime

Thermodynamics in the Quantum Regime
Author: Felix Binder
Publisher: Springer
Total Pages: 998
Release: 2019-04-01
Genre: Science
ISBN: 3319990462

Download Thermodynamics in the Quantum Regime Book in PDF, Epub and Kindle

Quantum Thermodynamics is a novel research field which explores the emergence of thermodynamics from quantum theory and addresses thermodynamic phenomena which appear in finite-size, non-equilibrium and finite-time contexts. Blending together elements from open quantum systems, statistical mechanics, quantum many-body physics, and quantum information theory, it pinpoints thermodynamic advantages and barriers emerging from genuinely quantum properties such as quantum coherence and correlations. Owing to recent experimental efforts, the field is moving quickly towards practical applications, such as nano-scale heat devices, or thermodynamically optimised protocols for emergent quantum technologies. Starting from the basics, the present volume reviews some of the most recent developments, as well as some of the most important open problems in quantum thermodynamics. The self-contained chapters provide concise and topical introductions to researchers who are new to the field. Experts will find them useful as a reference for the current state-of-the-art. In six sections the book covers topics such as quantum heat engines and refrigerators, fluctuation theorems, the emergence of thermodynamic equilibrium, thermodynamics of strongly coupled systems, as well as various information theoretic approaches including Landauer's principle and thermal operations. It concludes with a section dedicated to recent quantum thermodynamics experiments and experimental prospects on a variety of platforms ranging from cold atoms to photonic systems, and NV centres.