Electronic Phase Separation in Super-oxygenated La2-xsrxcuo4+y

Electronic Phase Separation in Super-oxygenated La2-xsrxcuo4+y
Author: Hashini R. De S. E Mohottala
Publisher:
Total Pages:
Release: 2006
Genre: Electronic dissertations
ISBN:

Download Electronic Phase Separation in Super-oxygenated La2-xsrxcuo4+y Book in PDF, Epub and Kindle

We studied microscopic and macroscopic properties of a series of superconducting La2-xSrxCuO4+y samples with various Sr contents. These samples are unique as they are doped with excess oxygen using wet chemical techniques. The properties of the system were studied by means of muon spin rotation (Î1⁄4SR), neutron scattering and bulk magnetization experiments. We have determined that the superoxygenated La2-xSrxCuO4+y system undergoes an electronically driven phase separation of doped holes into separate magnetic and superconducting regions. In the range where x is ≤ 1/8, we found that excess oxygen raises the superconducting onset temperature close to 40 K with a coexisting magnetic ordering temperature that also orders near 40 K. Neutron scattering experiments indicate the presence of incommensurate magnetism, consistent with previous reports on 1/8 th hole doped magnetic materials. Thus we determined the magnetic regions of our phase separated system to be anomalous, 1/8 th hole doped, magnetic versions of La2-xSr xCuO4, and the superconducting regions to be optimally doped versions of La2-xSrxCuO4. The superconducting and magnetic phases in the oxygen rich La 2-xSrxCuO4+y system seem to be the only stable ground states in the hole-rich side of the phase diagram. This simple two-component system is a key to understanding seemingly conflicting experimental observations and will give a new insight to the understanding of cuprate based high temperature superconductors.

Theory of Multipole Fluctuation Mediated Superconductivity and Multipole Phase

Theory of Multipole Fluctuation Mediated Superconductivity and Multipole Phase
Author: Rina Tazai
Publisher: Springer
Total Pages: 118
Release: 2021-06-14
Genre: Science
ISBN: 9789811610257

Download Theory of Multipole Fluctuation Mediated Superconductivity and Multipole Phase Book in PDF, Epub and Kindle

A strong spin-orbit interaction and Coulomb repulsion featuring strongly correlated d- and f-electron systems lead to various exotic phase transition including unconventional superconductivity and magnetic multipole order. However, their microscopic origins are long standing problem since they could not be explained based on conventional Migdal-Eliashberg theorem. The book focuses on many-body correlation effects beyond conventional theory for the d- and f-electron systems, and theoretically demonstrates the correlations to play significant roles in “mode-coupling” among multiple quantum fluctuations, which is called U-VC here. The following key findings are described in-depth: (i) spin triplet superconductivity caused by U-VC, (ii) being more important U-VC in f-electron systems due to magnetic multipole degrees of freedom induced by a spin-orbit interaction, and (iii) s-wave superconductivity stabilized cooperatively by antiferromagnetic fluctuations and electron-phonon interaction contrary to conventional understanding. The book provides meaningful step for revealing essential roles of many-body effects behind long standing problems in strongly correlated materials.

Superconductivity, Magnetism, Quantum Criticality, And Hidden Order In Quantum Materials

Superconductivity, Magnetism, Quantum Criticality, And Hidden Order In Quantum Materials
Author: Dom Lal Kunwar
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Superconductivity, Magnetism, Quantum Criticality, And Hidden Order In Quantum Materials Book in PDF, Epub and Kindle

The heavy fermions (HF) are strongly correlated electron systems consisting of intermetallic compounds of lanthanides and actinides ions with f -electrons unfilled shells. These systems are very rich in physics and the interplay between competing interactions results in various interesting physical phenomena such as heavy fermion behavior, unconventional superconductivity, non-Fermi-liquid behavior, coexistence of superconductivity and magnetism, and quantum criticality. The origin of such phenomena comes from the interaction of itinerant conduction states with the partially filled 4f - or 5f -electron states of rare earth elements. The study of such important physical phenomena can be possible by tuning the system using nonthermal control parameters, such as chemical composition, magnetic field, and applied pressure. So, studying the chemical pressure effect on heavy fermion systems with or without magnetic field is an intriguing idea to construct various phase diagrams and study their phase transitions. We performed heat capacity (HC), magnetoresistance (MR), and resistivity measurements on the Ce-based 115 and U-based 122 heavy fermion materials at low temperatures. We studied the nature of the quantum critical point, second-order phase transition, and the possible interplay between superconductivity and magnetism. First, we were motivated by the possibility of observing the coexistence of magnetism and unconventional superconductivity in the heavy fermion Ce1-xSmxCoIn5 alloys. We performed specific heat, MR, and resistivity measurements in different magnetic fields. We investigated how the samarium substitution on the cerium site affects the magnetic-field-tuned quantum criticality of stoichiometric CeCoIn5. We have observed Fermi-liquid to non-Fermi-liquid crossovers in the temperature dependence of the electronic specific heat and resistivity at higher external magnetic fields. We obtained the magnetic-field-induced quantum critical point (HQCP) by extrapolating the crossover temperature to zero temperature. Furthermore, we performed a scaling analysis of the electronic specific heat and confirmed the existence of the QCP. According to our findings, the magnitude of (HQCP) decreases as the samarium content rises and ultimately becomes zero. The electronic specific heat and resistivity data reveal a zero-field QCP for xcr = 0.15, which falls inside the antiferromagnetic and superconducting coexistence region. Next, we performed measurements of the heat capacity as a function of temperature in a single crystals URu2-xOsxSi2. Our experimental results show that the critical temperature of the second-order phase transition increases while the value of the Sommerfeld coefficient in the ordered state decreases with an increase in osmium concentration. We also observed the increase in the magnitude of the heat capacity at the critical temperature and a broadening of the critical fluctuations region with an increase in Os concentration. We analyze the experimental data using the Haule- Kotliar model, which identifies the 'hidden order' transition in the parent material URu2Si2 as a transition to a state with nonzero hexadecapolar moment. We showed that our experimental results are consistent with this model. In conclusion, we studied the interplay between superconductivity and magnetism in Ce based 115 and U based 122 single crystal alloys using heat capacity, magnetoresistivity, and resistivity measurements in both cryogenic systems including He-4 and He-3. The understating of various phenomena in these heavy fermions could be helpful in developing higher transition temperature superconductors, energy storage devices, quantum computers, and memory devices in the future.

Theory of Fluctuations in Superconductors

Theory of Fluctuations in Superconductors
Author: Anatoly Larkin
Publisher: OUP Oxford
Total Pages: 432
Release: 2005-01-13
Genre: Science
ISBN: 0191523704

Download Theory of Fluctuations in Superconductors Book in PDF, Epub and Kindle

This book presents a complete encyclopedia of superconducting fluctuations, summarising the last thirty-five years of work in the field. The first part of the book is devoted to an extended discussion of the Ginzburg-Landau phenomenology of fluctuations in its thermodynamical and time-dependent versions and its various applications. The second part deals with microscopic justification of the Ginzburg-Landau approach and presents the diagrammatic theory of fluctuations. The third part is devoted to a less-detailed review of the manifestation of fluctuations in observables: diamagnetism, magnetoconductivity, various tunneling characteristics, thermoelectricity, and NMR relaxation. The final chapters turn to the manifestation of fluctuations in unconventional superconducting systems: nanodrops, nanorings, Berezinsky-Kosterlitz-Thouless state, quantum phase transition between superconductor and insulator, and thermal and quantum fluctuations in weak superconducting systems. The book ends with a brief discussion on theories of high temperature superconductivity, where fluctuations appear as the possible protagonist of this exciting phenomenon.

Physics Briefs

Physics Briefs
Author:
Publisher:
Total Pages: 698
Release: 1991
Genre: Physics
ISBN:

Download Physics Briefs Book in PDF, Epub and Kindle

Condensed Matter Field Theory

Condensed Matter Field Theory
Author: Alexander Altland
Publisher: Cambridge University Press
Total Pages: 785
Release: 2010-03-11
Genre: Science
ISBN: 0521769752

Download Condensed Matter Field Theory Book in PDF, Epub and Kindle

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

World Congress on Superconductivity

World Congress on Superconductivity
Author: Calvin G. Burnham
Publisher: World Scientific
Total Pages: 710
Release: 1988
Genre: Science
ISBN: 9789971506100

Download World Congress on Superconductivity Book in PDF, Epub and Kindle

The development of high temperature superconductors is one of the major technological discoveries of this century. The impact and interactions from the scientific, technical, business and political aspects will be presented.