Plant-soil Feedbacks and Invasion in Sagebrush Steppe Ecosystems

Plant-soil Feedbacks and Invasion in Sagebrush Steppe Ecosystems
Author: Rachel Oglevie Jones
Publisher:
Total Pages: 318
Release: 2014
Genre: Electronic books
ISBN:

Download Plant-soil Feedbacks and Invasion in Sagebrush Steppe Ecosystems Book in PDF, Epub and Kindle

Invasion by non-native species is a serious ecological threat and the susceptibility of ecosystems to invasion is often highly correlated with soil resource availability. Understanding the role of plant-soil feedbacks in invaded ecosystems could provide insight into community successional trajectories following invasion and could improve our ability to manage these systems to restore native diversity. My dissertation examined how plant-soil feedbacks and resource availability influence the success of both cheatgrass and native species with three interrelated studies. In a large-scale observational study, I evaluated plant community characteristics as well as soil and plant nutrients associated with progressive cheatgrass invasion in a broadly distributed sagebrush ecological site type. I found that although many nutrient pools did not differ among levels of invasion, soil ammonium (NH4+) was negatively affected by increases in cheatgrass cover. Also, cheatgrass nutrient content did not differ across sites indicating that cheatgrass may alter plant available soil nutrients to the detriment of competitors while maintaining its own nutritional content via high nutrient use efficiency and/or soil mining. I also conducted a field experiment to provide a more mechanistic understanding of the role of disturbance on nutrient availability and invasion and to address potential management approaches. I evaluated the effects of 4-5 years of repeated burning, in combination with litter removal and post-fire seeding, on nutrient dynamics and plant responses. Results from my field experiment indicated that repeated burning is unlikely to decrease soil N availability in cheatgrass-dominated systems due to cool fire temperatures that do not volatilize biomass N and strong effects of weather on plant growth and soil processes. Repeated burning and litter removal, however, did have negative effects on litter biomass and C and N contents which negatively influenced cheatgrass biomass, density and reproduction. In addition, post-fire seeding with common wheat decreased cheatgrass abundance, likely due to competition. Integrated restoration approaches that decrease litter biomass and seed banks and increase competitive interactions may be more effective at reducing annual grasses and establishing desirable perennial species than approaches aimed at reducing soil nutrients. Together, the observational and experimental components of my dissertation indicate that plant-soil feedbacks in arid sagebrush shrublands are complex and that understanding these feedbacks requires both spatial and temporal variability in sampling. Furthermore, the results from these studies provide valuable information on techniques that could facilitate the restoration of cheatgrass-dominated systems to more diverse plant communities.

Soil Response to Fire Frequency in the Northern Columbia Basin Sagebrush Steppe

Soil Response to Fire Frequency in the Northern Columbia Basin Sagebrush Steppe
Author: Leslie C. Nichols
Publisher:
Total Pages: 44
Release: 2020
Genre: Sagebrush steppe ecology
ISBN:

Download Soil Response to Fire Frequency in the Northern Columbia Basin Sagebrush Steppe Book in PDF, Epub and Kindle

"Fire is one of the most significant disturbances in an ecosystem, as it is capable of altering the physical, chemical, and biological properties of soil, and the fire frequency in semi-arid ecosystems is increasing. These changes can potentially alter plant-soil feedbacks that may affect post-fire recovery of the native plant and soil communities and lead to an ecosystem state change. However, there is much uncertainty about the magnitude of change as soils are exposed to more fires, because soil recovery and changes in fire severity following a first fire mediate the impact of successive fires on soil properties. To improve understanding of fire frequency effects on the soil ecology of the northern Columbia Basin sagebrush steppe ecosystem, this study assessed the physical, chemical and biological properties of soil that are critical to plant communities (e.g. soil pH, C and N, respiration and extracellular enzyme activity) from four different fire frequencies (unburned, burned once, twice, and thrice). Our study yielded three main results: 1) fire reduced the soil C concentration relative to unburned soil, but only when soil was exposed to fire once, 2) soil pH and NO3--N increased with fire frequency, whereas enzyme activity decreased, and 3) soil organic matter contents and microbial respiration were suppressed significantly in the once and thrice burned soils compared to the unburned and twice burned soils. Taken together, our findings suggest that a one-time fire in this region of the sagebrush steppe is capable of significantly changing soil properties that alter plant-soil feedbacks and hinder ecosystem resilience, thus contributing to ecosystem change particularly when fire frequency increases."--Boise State University ScholarWorks.

Invasive Plant Ecology and Management

Invasive Plant Ecology and Management
Author: Thomas A. Monaco
Publisher: CABI
Total Pages: 216
Release: 2012
Genre: Nature
ISBN: 1845938119

Download Invasive Plant Ecology and Management Book in PDF, Epub and Kindle

Bringing together ecology and management of invasive plants within natural and agricultural ecosystems, this book bridges the knowledge gap between the processes operating within ecosystems and the practices used to prevent, contain, control and eradicate invasive plant species. The book targets key processes that can be managed, the impact of invasive plants on these ecosystem processes and illustrates how adopting ecologically based principles can influence the ecosystem and lead to effective land management.

Soil Community Dynamics in Sagebrush and Cheatgrass-invaded Ecosystems of the Northern Great Basin

Soil Community Dynamics in Sagebrush and Cheatgrass-invaded Ecosystems of the Northern Great Basin
Author: Nicole M. DeCrappeo
Publisher:
Total Pages: 276
Release: 2011
Genre: Cheatgrass brome
ISBN:

Download Soil Community Dynamics in Sagebrush and Cheatgrass-invaded Ecosystems of the Northern Great Basin Book in PDF, Epub and Kindle

Sagebrush steppe ecosystems in the Great Basin have become increasingly threatened by the proliferation of cheatgrass (Bromus tectorum L.), an invasive annual grass. Diverse sagebrush and perennial bunchgrass landscapes can be converted to homogenous cheatgrass grasslands mainly through the effects of fire. Although the consequences of this conversion are well understood in the context of plant community dynamics, information on changes to soil communities has not been well documented. I characterized soil surface, microbial, and nematode community dynamics in sagebrush steppe and cheatgrass-invaded areas across the northern Great Basin. I also examined how restoration treatments, such as seeding with a low impact rangeland drill and applying herbicide or sugar to plots, affected soil communities. Soil community functional diversity and structure were alike at sites where soil pH and percent bare ground were similar. Rangeland drill seeding and associated human trampling decreased biological soil crust cover at sites with high proportions of cyanobacteria. Herbicide treatments had little effect on soil communities, but addition of sugar to plots increased carbohydrate utilization and fungal biomass of cheatgrass- invaded soils. In studying paired intact and cheatgrass-invaded sagebrush plots, I found that microbial functional diversity and community composition were different in sagebrush, bunchgrass, cheatgrass, and interspace soils. Fungal biomass and species richness were highest under sagebrush and decreased under cheatgrass. To examine how soil community shifts might affect ecosystem processes, I investigated the contribution of fungi to inorganic nitrogen (N) mineralization in sagebrush and cheatgrass rhizospheres. Results from a 15N pool dilution experiment modified with the fungal protein synthesis inhibitor cycloheximide showed that gross and net N cycling rates did not differ between control sagebrush and cheatgrass soils and that fungi were important for gross NH4+ production and consumption in both soil types. However, net nitrification increased in sagebrush soils after 24 h, suggesting that when organic matter decomposition by fungi ceased bacteria became carbon limited and could no longer assimilate NH4+. These studies demonstrate that cheatgrass invasion into sagebrush steppe ecosystems can bring about significant changes to soil communities and that these changes may have repercussions for ecosystem functioning in the northern Great Basin.

Plant-induced soil changes: Processes and feedbacks

Plant-induced soil changes: Processes and feedbacks
Author: N. van Breemen
Publisher: Springer Science & Business Media
Total Pages: 270
Release: 1998-08-31
Genre: Nature
ISBN: 9780792352167

Download Plant-induced soil changes: Processes and feedbacks Book in PDF, Epub and Kindle

This book by soil scientists and ecologists reviews how and why plants influence soils. Topics include effects on mineral weathering, soil structure, and soil organic matter and nutrient dynamics, case studies of soil-plant interactions in specific biomes and of secondary chemicals influencing nutrient cycling, the rhizosphere, and potential evolutionary consequences of plant-induced soil changes. This is the first volume that specifically highlights the effects of plants on soils and their feedbacks to plants. By contrast, other texts on soil-plant relationships emphasize effects of soil fertility on plants, following the strongly agronomic character of most research in this area. The aspects discussed in this volume are crucial for understanding terrestrial ecosystems, biogeochemistry and soil genesis. The book is directed to terrestrial ecologists, foresters, soil scientists, environmental scientists and biogeochemists, and to students following specialist courses in these fields.

Rangeland Systems

Rangeland Systems
Author: David D. Briske
Publisher: Springer
Total Pages: 664
Release: 2017-04-12
Genre: Technology & Engineering
ISBN: 3319467093

Download Rangeland Systems Book in PDF, Epub and Kindle

This book is open access under a CC BY-NC 2.5 license. This book provides an unprecedented synthesis of the current status of scientific and management knowledge regarding global rangelands and the major challenges that confront them. It has been organized around three major themes. The first summarizes the conceptual advances that have occurred in the rangeland profession. The second addresses the implications of these conceptual advances to management and policy. The third assesses several major challenges confronting global rangelands in the 21st century. This book will compliment applied range management textbooks by describing the conceptual foundation on which the rangeland profession is based. It has been written to be accessible to a broad audience, including ecosystem managers, educators, students and policy makers. The content is founded on the collective experience, knowledge and commitment of 80 authors who have worked in rangelands throughout the world. Their collective contributions indicate that a more comprehensive framework is necessary to address the complex challenges confronting global rangelands. Rangelands represent adaptive social-ecological systems, in which societal values, organizations and capacities are of equal importance to, and interact with, those of ecological processes. A more comprehensive framework for rangeland systems may enable management agencies, and educational, research and policy making organizations to more effectively assess complex problems and develop appropriate solutions.

Drivers of Plant Community Dynamics in Sagebrush Steppe Ecosystems

Drivers of Plant Community Dynamics in Sagebrush Steppe Ecosystems
Author: Michael D. Reisner
Publisher:
Total Pages: 540
Release: 2011
Genre:
ISBN:

Download Drivers of Plant Community Dynamics in Sagebrush Steppe Ecosystems Book in PDF, Epub and Kindle

Sagebrush steppe ecosystems are one of the most widespread but endangered ecosystems in North America. A diverse array of human-related stressors has gradually compromised these ecosystems' resilience to disturbance and invasion by Bromus tectorum (cheatgrass). The role of the foundational shrub Artemisia as a driver of herbaceous community structure and dynamics during this degradation process is poorly understood. Many of the individual factors driving B. tectorum invasions are well documented. However a predictive understanding of the relative importance of complex, interacting factors in the causal network of simultaneously occurring processes determining invasibility has proven elusive. I examined these issues at the landscape level across 75 sites capturing a range of soil and landscape properties and cattle grazing levels similar to those found across the Great Basin. Cumulative cattle herbivory stress levels were a predominant component of both the overlapping heat and water stress gradients driving the structure of Artemisia interactions with herbaceous species. Consistent with the stress gradient hypothesis, Artemisia facilitation of herbaceous species was most frequent and strongest at the highest stress levels, and competition was most frequent and strongest at the lowest stress levels. The two species with the highest competitive response abilities, Elymus elymoides and Poa secunda, showed the strongest facilitation at the upper limits of their stress tolerances. The structure of Artemisia interactions with the invasive B. tectorum was strikingly different than those with native bunchgrasses. Artemisia interactions with native bunchgrasses shifted from competition to facilitation with increasing heat, water, and herbivory stress, but its interactions remained competitive with B. tectorum along the entire stress gradient. Shifts in the structure of interactions between Artemisia and native bunchgrasses were associated with both an increase and decrease in community compositional and functional stability. I report the first evidence of native species facilitation decreasing community invasibility. Artemisia facilitation increased native bunchgrass composition, which reduced the magnitude of B. tectorum invasion in under-shrub compared to interspace communities. This decreased invasibility did not translate into lower invasibility at the community level because of the limited spatial scale over which such facilitation occurs. Artemisia facilitation increased community compositional and functional stability at intermediate stress levels but decreased community stability at high stress levels. Facilitation became a destabilizing force when native bunchgrass species became "obligate" beneficiaries, i.e. strongly dependent on Artemisia facilitation for their continued persistence in the community. Structural equation modeling assessed the structure of the causal network and relative importance of factors and processes predicted to drive community invasibility. The linchpin of ecosystem invasibility was the size of and connectivity between basal gaps in perennial vegetation, driven by shifts in the structure and spatial aggregation of the native bunchgrass community. Landscape orientation and soil physical properties determined inherent risk to invasion. Resident bunchgrass and biological soil crust communities provided biotic resistance to invasion by reducing the size of and connectivity between basal gaps and thereby limiting available resources and reducing safe sites for B. tectorum establishment. High levels of cattle grazing reduced ecosystem resilience by reducing native bunchgrass and biological soil crust abundance and altering bunchgrass community composition and facilitated B. tectorum invasion. Conserving and restoring resilience and resistance of these imperiled ecosystems will require reducing cumulative stress levels. As global climate change increases heat and water stress, reducing cumulative cattle grazing intensities by altering utilization rates and/or seasons of use may be the only effective means of accomplishing these goals.

Greater Sage-Grouse

Greater Sage-Grouse
Author: Steve Knick
Publisher: Univ of California Press
Total Pages: 665
Release: 2011-05-19
Genre: Science
ISBN: 0520948688

Download Greater Sage-Grouse Book in PDF, Epub and Kindle

Admired for its elaborate breeding displays and treasured as a game bird, the Greater Sage-Grouse is a charismatic symbol of the broad open spaces in western North America. Unfortunately these birds have declined across much of their range—which stretches across 11 western states and reaches into Canada—mostly due to loss of critical sagebrush habitat. Today the Greater Sage-Grouse is at the center of a complex conservation challenge. This multifaceted volume, an important foundation for developing conservation strategies and actions, provides a comprehensive synthesis of scientific information on the biology and ecology of the Greater Sage-Grouse. Bringing together the experience of thirty-eight researchers, it describes the bird’s population trends, its sagebrush habitat, and potential limitations to conservation, including the effects of rangeland fire, climate change, invasive plants, disease, and land uses such as energy development, grazing, and agriculture.