Physiological Responses of Cotton Genotypes to Water-deficit Stress During Reproductive Development

Physiological Responses of Cotton Genotypes to Water-deficit Stress During Reproductive Development
Author: Christiane Pilon
Publisher:
Total Pages: 298
Release: 2015
Genre: Cotton
ISBN: 9781321948950

Download Physiological Responses of Cotton Genotypes to Water-deficit Stress During Reproductive Development Book in PDF, Epub and Kindle

Drought stress is one of the major abiotic factors affecting crop growth and limiting production worldwide. Cotton genotypes vary in drought tolerance, and the effects of drought stress on the anatomy and physiology of cotton leaves and roots have been reported. However, information on physiological and metabolic processes of leaves and flowers of modern cotton cultivars under water-deficit stress during reproductive development is not well elucidated. It was hypothesized that water-deficit stress during squaring and flowering stages would impair stomatal conductance and photosynthetic efficiency of leaves, which consequently would result in osmotic adjustment through accumulation of compatible solutes, increased activity of enzymes, and perturbation of carbohydrates metabolism in leaves and flowers of cotton plants, and differences in drought tolerance among the genotypes would exist. Therefore, field and growth room experiments were conducted to evaluate the effects of water-deficit stress during reproductive development on the physiology and metabolism of leaves and flowers of a diverse range of cotton genotypes. Results indicated that water-deficit stress significantly decreased stomatal conductance of cotton plants. Water-deficit stress during the early squaring stage increased activity of antioxidant enzymes, and decreased photosynthetic efficiency and concentrations of pigments of cotton leaves. Carbohydrate metabolism in cotton flowers and subtending leaves was also compromised by water-deficit conditions, with a shift in the carbohydrate partitioning being promoted by the stress, with subtending leaves and bracts as main sources and pistils as main sinks, mainly for sucrose and soluble sugars. In addition, osmotic adjustment through proline accumulation and changes in osmotic potential is a mechanism used by cotton plants to tolerate drought stress. Leaves are more sensitive to water-deficit stress than ovaries, thus with higher osmotic adjustment. Finally, genotypes varied in tolerance to drought, with genotypes that showed higher osmotic adjustment in leaves and flowers indicating higher tolerance to drought episodes. Osmotic adjustment through accumulation of compatible solutes could be used as an effective tool for drought-tolerant genotypes in plant biotechnology. However, further research is needed for complete elucidation of osmotic adjustment and carbohydrate metabolism in flower tissues of cotton genotypes under drought conditions during the flower development.

Effect of Water-deficit Stress on Cotton During Reproductive Development

Effect of Water-deficit Stress on Cotton During Reproductive Development
Author: Dimitra Loka
Publisher:
Total Pages: 410
Release: 2012
Genre: Cotton
ISBN: 9781267311016

Download Effect of Water-deficit Stress on Cotton During Reproductive Development Book in PDF, Epub and Kindle

Water deficit is a major abiotic factor limiting plant growth and crop productivity around the world. Cotton (Gossypium hirsutum L.) is considered to be relatively tolerant to drought and the effects of water stress on leaf physiology and metabolism have been extensively documented. However, information is lacking on the effect of water-deficit stress on the cotton flower. It was hypothesized that water-deficit stress would impair gas exchange functions which consequently would result in perturbation of carbohydrates of cotton reproductive units. To investigate this hypothesis growth room studies and field studies were conducted with the objectives being to document the physiological and biochemical changes that take place in cotton flowers and their subtending leaves when subjected to limited water supply. Additionally, the effect of the ethylene inhibitor 1-Methylcyclopropene under conditions of water stress was investigated as well as the response of leaf and ovary polyamine metabolism of two cotton cultivars differing in drought tolerance. Results indicated that water-deficit stress during flowering significantly compromised leaf gas exchange functions resulting in decreased stomatal conductance, photosynthesis, respiration and water potential. However, cotton reproductive units appeared to be less drought-sensitive compared to the leaves possibly due to higher water potential and glutathione reductase activity. Limited supply of water significantly affected carbohydrate metabolism of both leaf and pistil resulting in carbohydrate accumulation. Contrary to expectations, application of the ethylene inhibitor 1-MCP had no effect on leaf gas exchange function, however, it reversed the effect of water stress on pistil sucrose concentrations. Finally, water-deficit stress during flowering had a significant effect on polyamine metabolism of both leaf and pistil, resulting in increases in putrescine, spermidine and spermine in drought-sensitive cultivars. The differential response of polyamine metabolism between drought-sensitive and tolerant cultivars suggests that polyamines could be effective tools not only in selection of drought-tolerant cultivars, but also in drought tolerance engineering, however further research is needed in order to elucidate the exact pathways of their action.

Physiology of Cotton

Physiology of Cotton
Author: James McD. Stewart
Publisher: Springer Science & Business Media
Total Pages: 573
Release: 2009-11-04
Genre: Science
ISBN: 9048131952

Download Physiology of Cotton Book in PDF, Epub and Kindle

Cotton production today is not to be undertaken frivolously if one expects to profit by its production. If cotton production is to be sustainable and produced profitably, it is essential to be knowledgeable about the growth and development of the cotton plant and in the adaptation of cultivars to the region as well as the technology available. In addition, those individuals involved in growing cotton should be familiar with the use of management aids to know the most profitable time to irrigate, apply plant growth regulators, herbicides, foliar fertilizers, insecticides, defoliants, etc. The chapters in this book were assembled to provide those dealing with the production of cotton with the basic knowledge of the physiology of the plant required to manage the cotton crop in a profitable manner.

Crop Physiology Case Histories for Major Crops

Crop Physiology Case Histories for Major Crops
Author: Victor Sadras
Publisher: Academic Press
Total Pages: 780
Release: 2020-12-05
Genre: Technology & Engineering
ISBN: 0128191953

Download Crop Physiology Case Histories for Major Crops Book in PDF, Epub and Kindle

Crop Physiology: Case Histories of Major Crops updates the physiology of broad-acre crops with a focus on the genetic, environmental and management drivers of development, capture and efficiency in the use of radiation, water and nutrients, the formation of yield and aspects of quality. These physiological process are presented in a double context of challenges and solutions. The challenges to increase plant-based food, fodder, fiber and energy against the backdrop of population increase, climate change, dietary choices and declining public funding for research and development in agriculture are unprecedented and urgent. The proximal technological solutions to these challenges are genetic improvement and agronomy. Hence, the premise of the book is that crop physiology is most valuable when it engages meaningfully with breeding and agronomy. With contributions from 92 leading scientists from around the world, each chapter deals with a crop: maize, rice, wheat, barley, sorghum and oat; quinoa; soybean, field pea, chickpea, peanut, common bean, lentil, lupin and faba bean; sunflower and canola; potato, cassava, sugar beet and sugarcane; and cotton. A crop-based approach to crop physiology in a G x E x M context Captures the perspectives of global experts on 22 crops

Cotton Physiology

Cotton Physiology
Author: Jack R. Mauney
Publisher:
Total Pages: 840
Release: 1986
Genre: Cotton
ISBN:

Download Cotton Physiology Book in PDF, Epub and Kindle

Advanced Analysis of the Responses of Cotton Genotypes Growing Under Water Stress

Advanced Analysis of the Responses of Cotton Genotypes Growing Under Water Stress
Author: Murilo Minekawa Maeda
Publisher:
Total Pages: 153
Release: 2013
Genre:
ISBN:

Download Advanced Analysis of the Responses of Cotton Genotypes Growing Under Water Stress Book in PDF, Epub and Kindle

The ever-growing world population raises the concern and necessity of rational use and distribution of limited water resources. Water deficit is the single most dominant abiotic factor limiting cotton (Gossypium hirsutum L.) yield in drought-prone Texas croplands. Characterizing plant traits conferring drought tolerance to cotton genotypes and then transferring this information back to breeders and geneticists have the potential of significantly increasing and stabilizing production statewide. Although a plethora of physiological studies have been conducted and have demonstrated that drought tolerance in plants is likely to be conferred by a combination of plant traits rather than a single trait, this knowledge has not translated into improved breeding lines. Experiments were conducted in 2010 and 2011 in the Drought Tolerance Laboratory (Texas AgriLife Research and Extension Center in Corpus Christi, TX) to analyze the responses of cotton genotypes to different levels of water stress. This facility is equipped with computerized systems capable of continuously monitoring whole-plant water use as well as several environmental parameters. Sixteen cotton genotypes were provided by Monsanto Co. and the Texas AgriLife Cotton Improvement Programs at College Station and Lubbock. Seeds were pre-germinated in wet paper towels and then hand planted in large pots previously filled with fritted clay. A total of 3 and 8 (2010 and 2011, respectively) pots containing plants of each genotype were permanently placed on micro-lysimeters for continuous measurement of water use. Water regimes were imposed in 2010 (well-watered and water-stressed), and 2011 (water-stressed) when plants reached the early-flowering stage and were carried until plants reached maturity (100% open bolls). Data collected showed that genotypes have very distinct water use patterns. The water stress treatment imposed on the test plants negatively affected plant growth that was indicated by a lower plant height, total number of leaves, and main-stem nodes of stressed plants when contrasted to their well-watered counterparts. Stomatal density was remarkably different among genotypes and a higher density was found on the abaxial (lower) leaf surface for all genotypes studied. Root dry mass production had different responses depending upon the severity of the water stress. Highest root dry mass was observed when plants were exposed to a mild stress and lowest when a more severe water restriction was imposed. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148205

Heat Stress Tolerance in Plants

Heat Stress Tolerance in Plants
Author: Shabir H. Wani
Publisher: John Wiley & Sons
Total Pages: 315
Release: 2020-04-06
Genre: Science
ISBN: 1119432367

Download Heat Stress Tolerance in Plants Book in PDF, Epub and Kindle

Demystifies the genetic, biochemical, physiological, and molecular mechanisms underlying heat stress tolerance in plants Heat stress—when high temperatures cause irreversible damage to plant function or development—severely impairs the growth and yield of agriculturally important crops. As the global population mounts and temperatures continue to rise, it is crucial to understand the biochemical, physiological, and molecular mechanisms of thermotolerance to develop ‘climate-smart’ crops. Heat Stress Tolerance in Plants provides a holistic, cross-disciplinary survey of the latest science in this important field. Presenting contributions from an international team of plant scientists and researchers, this text examines heat stress, its impact on crop plants, and various mechanisms to modulate tolerance levels. Topics include recent advances in molecular genetic approaches to increasing heat tolerance, the potential role of biochemical and molecular markers in screening germplasm for thermotolerance, and the use of next-generation sequencing to unravel the novel genes associated with defense and metabolite pathways. This insightful book: Places contemporary research on heat stress in plants within the context of global climate change and population growth Includes diverse analyses from physiological, biochemical, molecular, and genetic perspectives Explores various approaches to increasing heat tolerance in crops of high commercial value, such as cotton Discusses the applications of plant genomics in the development of thermotolerant ‘designer crops’ An important contribution to the field, Heat Stress Tolerance in Plants is an invaluable resource for scientists, academics, students, and researchers working in fields of pulse crop biochemistry, physiology, genetics, breeding, and biotechnology.

Cotton Production

Cotton Production
Author: Khawar Jabran
Publisher: John Wiley & Sons
Total Pages: 435
Release: 2019-08-05
Genre: Technology & Engineering
ISBN: 1119385512

Download Cotton Production Book in PDF, Epub and Kindle

Provides a comprehensive overview of the role of cotton in the economy and cotton production around the world This book offers a complete look at the world’s largest fiber crop: cotton. It examines its effect on the global economy—its uses and products, harvesting and processing, as well as the major challenges and their solutions, recent trends, and modern technologies involved in worldwide production of cotton. Cotton Production presents recent developments achieved by major cotton producing regions around the world, including China, India, USA, Pakistan, Turkey and Europe, South America, Central Asia, and Australia. In addition to origin and history, it discusses the recent advances in management practices, as well as the agronomic challenges and the solutions in the major cotton producing areas of the world. Keeping a focus on global context, the book provides sufficient details regarding the management of cotton crops. These details are not limited to the choice of cultivar, soil management, fertilizer and water management, pest control, cotton harvesting, and processing. The first book to cover all aspects of cotton production in a global context Details the role of cotton in the economy, the uses and products of cotton, and its harvesting and processing Discusses the current state of cotton management practices and issues within and around the world’s cotton producing areas Provides insight into the ways to improve cotton productivity in order to keep pace with the growing needs of an increasing population Cotton Production is an essential book for students taking courses in agronomy and cropping systems as well as a reference for agricultural advisors, extension specialists, and professionals throughout the industry.

Climate Change and Crop Stress

Climate Change and Crop Stress
Author: Arun K.Shanker
Publisher: Academic Press
Total Pages: 601
Release: 2021-11-19
Genre: Science
ISBN: 0128165359

Download Climate Change and Crop Stress Book in PDF, Epub and Kindle

Climate Change and Crop Stress: Molecules to Ecosystems expounds on the transitional period where science has progressed to ‘post-genomics’ and the gene editing era, putting field performance of crops to the forefront and challenging the production of practical applicability vs. theoretical possibility. Researchers have concentrated efforts on the effects of environmental stress conditions such as drought, heat, salinity, cold, or pathogen infection which can have a devastating impact on plant growth and yield. Designed to deliver information to combat stress both in isolation and through simultaneous crop stresses, this edited compilation provides a comprehensive view on the challenges and impacts of simultaneous stresses. Presents a multidisciplinary view of crop stresses, empowering readers to quickly align their individual experience and perspective with the broader context Combines the mechanistic aspects of stresses with the strategic aspects Presents both abiotic and biotic stresses in a single volume