Physics of Data Science and Machine Learning

Physics of Data Science and Machine Learning
Author: Ijaz A. Rauf
Publisher: CRC Press
Total Pages: 176
Release: 2021-11-28
Genre: Computers
ISBN: 1000450473

Download Physics of Data Science and Machine Learning Book in PDF, Epub and Kindle

Physics of Data Science and Machine Learning links fundamental concepts of physics to data science, machine learning, and artificial intelligence for physicists looking to integrate these techniques into their work. This book is written explicitly for physicists, marrying quantum and statistical mechanics with modern data mining, data science, and machine learning. It also explains how to integrate these techniques into the design of experiments, while exploring neural networks and machine learning, building on fundamental concepts of statistical and quantum mechanics. This book is a self-learning tool for physicists looking to learn how to utilize data science and machine learning in their research. It will also be of interest to computer scientists and applied mathematicians, alongside graduate students looking to understand the basic concepts and foundations of data science, machine learning, and artificial intelligence. Although specifically written for physicists, it will also help provide non-physicists with an opportunity to understand the fundamental concepts from a physics perspective to aid in the development of new and innovative machine learning and artificial intelligence tools. Key Features: Introduces the design of experiments and digital twin concepts in simple lay terms for physicists to understand, adopt, and adapt. Free from endless derivations; instead, equations are presented and it is explained strategically why it is imperative to use them and how they will help in the task at hand. Illustrations and simple explanations help readers visualize and absorb the difficult-to-understand concepts. Ijaz A. Rauf is an adjunct professor at the School of Graduate Studies, York University, Toronto, Canada. He is also an associate researcher at Ryerson University, Toronto, Canada and president of the Eminent-Tech Corporation, Bradford, ON, Canada.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
Total Pages: 615
Release: 2022-05-05
Genre: Computers
ISBN: 1009098489

Download Data-Driven Science and Engineering Book in PDF, Epub and Kindle

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

The Statistical Physics of Data Assimilation and Machine Learning

The Statistical Physics of Data Assimilation and Machine Learning
Author: Henry D. I. Abarbanel
Publisher: Cambridge University Press
Total Pages: 207
Release: 2022-02-17
Genre: Computers
ISBN: 1316519635

Download The Statistical Physics of Data Assimilation and Machine Learning Book in PDF, Epub and Kindle

The theory of data assimilation and machine learning is introduced in an accessible manner for undergraduate and graduate students.

Data Science and Machine Learning

Data Science and Machine Learning
Author: Dirk P. Kroese
Publisher: CRC Press
Total Pages: 538
Release: 2019-11-20
Genre: Business & Economics
ISBN: 1000730778

Download Data Science and Machine Learning Book in PDF, Epub and Kindle

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Deep Learning For Physics Research

Deep Learning For Physics Research
Author: Martin Erdmann
Publisher: World Scientific
Total Pages: 340
Release: 2021-06-25
Genre: Science
ISBN: 9811237476

Download Deep Learning For Physics Research Book in PDF, Epub and Kindle

A core principle of physics is knowledge gained from data. Thus, deep learning has instantly entered physics and may become a new paradigm in basic and applied research.This textbook addresses physics students and physicists who want to understand what deep learning actually means, and what is the potential for their own scientific projects. Being familiar with linear algebra and parameter optimization is sufficient to jump-start deep learning. Adopting a pragmatic approach, basic and advanced applications in physics research are described. Also offered are simple hands-on exercises for implementing deep networks for which python code and training data can be downloaded.

Deep Learning and Physics

Deep Learning and Physics
Author: Akinori Tanaka
Publisher: Springer Nature
Total Pages: 207
Release: 2021-03-24
Genre: Science
ISBN: 9813361085

Download Deep Learning and Physics Book in PDF, Epub and Kindle

What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.

Deep Learning for Physics Research

Deep Learning for Physics Research
Author: Martin Erdmann
Publisher: World Scientific Publishing Company
Total Pages: 0
Release: 2021
Genre: Computers
ISBN: 9789811237454

Download Deep Learning for Physics Research Book in PDF, Epub and Kindle

A core principle of physics is knowledge gained from data. Thus, deep learning has instantly entered physics and may become a new paradigm in basic and applied research. This textbook addresses physics students and physicists who want to understand what deep learning actually means and which potential it offers for their own scientific projects. Being familiar with linear algebra and parameter optimization is sufficient to jump-start deep learning. The authors of this book take a pragmatic approach, describe basic and advanced applications in physics research, and offer simple hands-on exercises for programming deep networks for which source code and training data can be downloaded. This book provides a comprehensive introduction to topological insulators, topological superconductors and topological semimetals. It includes all the mathematical background required for the subject. There are very few books with such a coverage in the market.

Machine Learning and Data Science in the Power Generation Industry

Machine Learning and Data Science in the Power Generation Industry
Author: Patrick Bangert
Publisher: Elsevier
Total Pages: 276
Release: 2021-01-14
Genre: Technology & Engineering
ISBN: 0128226005

Download Machine Learning and Data Science in the Power Generation Industry Book in PDF, Epub and Kindle

Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study–driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting. Provides best practices on how to design and set up ML projects in power systems, including all nontechnological aspects necessary to be successful Explores implementation pathways, explaining key ML algorithms and approaches as well as the choices that must be made, how to make them, what outcomes may be expected, and how the data must be prepared for them Determines the specific data needs for the collection, processing, and operationalization of data within machine learning algorithms for power systems Accompanied by numerous supporting real-world case studies, providing practical evidence of both best practices and potential pitfalls

Data Science

Data Science
Author: Ivo D. Dinov
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 489
Release: 2021-12-06
Genre: Computers
ISBN: 3110697823

Download Data Science Book in PDF, Epub and Kindle

The amount of new information is constantly increasing, faster than our ability to fully interpret and utilize it to improve human experiences. Addressing this asymmetry requires novel and revolutionary scientific methods and effective human and artificial intelligence interfaces. By lifting the concept of time from a positive real number to a 2D complex time (kime), this book uncovers a connection between artificial intelligence (AI), data science, and quantum mechanics. It proposes a new mathematical foundation for data science based on raising the 4D spacetime to a higher dimension where longitudinal data (e.g., time-series) are represented as manifolds (e.g., kime-surfaces). This new framework enables the development of innovative data science analytical methods for model-based and model-free scientific inference, derived computed phenotyping, and statistical forecasting. The book provides a transdisciplinary bridge and a pragmatic mechanism to translate quantum mechanical principles, such as particles and wavefunctions, into data science concepts, such as datum and inference-functions. It includes many open mathematical problems that still need to be solved, technological challenges that need to be tackled, and computational statistics algorithms that have to be fully developed and validated. Spacekime analytics provide mechanisms to effectively handle, process, and interpret large, heterogeneous, and continuously-tracked digital information from multiple sources. The authors propose computational methods, probability model-based techniques, and analytical strategies to estimate, approximate, or simulate the complex time phases (kime directions). This allows transforming time-varying data, such as time-series observations, into higher-dimensional manifolds representing complex-valued and kime-indexed surfaces (kime-surfaces). The book includes many illustrations of model-based and model-free spacekime analytic techniques applied to economic forecasting, identification of functional brain activation, and high-dimensional cohort phenotyping. Specific case-study examples include unsupervised clustering using the Michigan Consumer Sentiment Index (MCSI), model-based inference using functional magnetic resonance imaging (fMRI) data, and model-free inference using the UK Biobank data archive. The material includes mathematical, inferential, computational, and philosophical topics such as Heisenberg uncertainty principle and alternative approaches to large sample theory, where a few spacetime observations can be amplified by a series of derived, estimated, or simulated kime-phases. The authors extend Newton-Leibniz calculus of integration and differentiation to the spacekime manifold and discuss possible solutions to some of the "problems of time". The coverage also includes 5D spacekime formulations of classical 4D spacetime mathematical equations describing natural laws of physics, as well as, statistical articulation of spacekime analytics in a Bayesian inference framework. The steady increase of the volume and complexity of observed and recorded digital information drives the urgent need to develop novel data analytical strategies. Spacekime analytics represents one new data-analytic approach, which provides a mechanism to understand compound phenomena that are observed as multiplex longitudinal processes and computationally tracked by proxy measures. This book may be of interest to academic scholars, graduate students, postdoctoral fellows, artificial intelligence and machine learning engineers, biostatisticians, econometricians, and data analysts. Some of the material may also resonate with philosophers, futurists, astrophysicists, space industry technicians, biomedical researchers, health practitioners, and the general public.

Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes)

Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes)
Author:
Publisher: World Scientific
Total Pages: 1001
Release: 2020-03-10
Genre: Computers
ISBN: 9811204586

Download Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes) Book in PDF, Epub and Kindle

This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.