PETSc for Partial Differential Equations: Numerical Solutions in C and Python

PETSc for Partial Differential Equations: Numerical Solutions in C and Python
Author: Ed Bueler
Publisher: SIAM
Total Pages: 407
Release: 2020-10-22
Genre: Mathematics
ISBN: 1611976316

Download PETSc for Partial Differential Equations: Numerical Solutions in C and Python Book in PDF, Epub and Kindle

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.

PETSc for Partial Differential Equations

PETSc for Partial Differential Equations
Author: Edward Lee Bueler
Publisher:
Total Pages:
Release: 2020
Genre: C (Computer program language)
ISBN: 9781611976304

Download PETSc for Partial Differential Equations Book in PDF, Epub and Kindle

"PETSc for Partial Differential Equations is the first textbook to cover PETSc programming for nonlinear PDEs"--

Solving PDEs in Python

Solving PDEs in Python
Author: Hans Petter Langtangen
Publisher: Springer
Total Pages: 152
Release: 2017-03-21
Genre: Computers
ISBN: 3319524623

Download Solving PDEs in Python Book in PDF, Epub and Kindle

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

Automated Solution of Differential Equations by the Finite Element Method

Automated Solution of Differential Equations by the Finite Element Method
Author: Anders Logg
Publisher: Springer Science & Business Media
Total Pages: 723
Release: 2012-02-24
Genre: Computers
ISBN: 3642230997

Download Automated Solution of Differential Equations by the Finite Element Method Book in PDF, Epub and Kindle

This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

DUNE — The Distributed and Unified Numerics Environment

DUNE — The Distributed and Unified Numerics Environment
Author: Oliver Sander
Publisher: Springer Nature
Total Pages: 616
Release: 2020-12-07
Genre: Computers
ISBN: 3030597024

Download DUNE — The Distributed and Unified Numerics Environment Book in PDF, Epub and Kindle

The Distributed and Unified Numerics Environment (Dune) is a set of open-source C++ libraries for the implementation of finite element and finite volume methods. Over the last 15 years it has become one of the most commonly used libraries for the implementation of new, efficient simulation methods in science and engineering. Describing the main Dune libraries in detail, this book covers access to core features like grids, shape functions, and linear algebra, but also higher-level topics like function space bases and assemblers. It includes extensive information on programmer interfaces, together with a wealth of completed examples that illustrate how these interfaces are used in practice. After having read the book, readers will be prepared to write their own advanced finite element simulators, tapping the power of Dune to do so.

A Software Repository for Gaussian Quadratures and Christoffel Functions

A Software Repository for Gaussian Quadratures and Christoffel Functions
Author: Walter Gautschi
Publisher: SIAM
Total Pages: 152
Release: 2020-10-30
Genre: Mathematics
ISBN: 1611976359

Download A Software Repository for Gaussian Quadratures and Christoffel Functions Book in PDF, Epub and Kindle

This companion piece to the author’s 2018 book, A Software Repository for Orthogonal Polynomials, focuses on Gaussian quadrature and the related Christoffel function. The book makes Gauss quadrature rules of any order easily accessible for a large variety of weight functions and for arbitrary precision. It also documents and illustrates known as well as original approximations for Gauss quadrature weights and Christoffel functions. The repository contains 60+ datasets, each dealing with a particular weight function. Included are classical, quasi-classical, and, most of all, nonclassical weight functions and associated orthogonal polynomials. Scientists, engineers, applied mathematicians, and statisticians will find the book of interest.

PEM Fuel Cells

PEM Fuel Cells
Author: Jasna Jankovic
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 508
Release: 2023-05-22
Genre: Technology & Engineering
ISBN: 3110622726

Download PEM Fuel Cells Book in PDF, Epub and Kindle

This book is a comprehensive introduction to the rapidly developing field of modeling and characterization of PEM fuel cells. It focuses on i) fuel cell performance modeling and performance characterization applicable from single cells to stacks, ii) fundamental and advanced techniques for structural and compositional characterization of fuel cell components and iii) electrocatalyst design. Written by experts in this field, this book is an invaluable tool for graduate students and professionals.

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
Total Pages: 537
Release: 2003-04-01
Genre: Mathematics
ISBN: 0898715342

Download Iterative Methods for Sparse Linear Systems Book in PDF, Epub and Kindle

Mathematics of Computing -- General.

Encyclopedia of Geology

Encyclopedia of Geology
Author:
Publisher: Academic Press
Total Pages: 5634
Release: 2020-12-16
Genre: Science
ISBN: 0081029098

Download Encyclopedia of Geology Book in PDF, Epub and Kindle

Encyclopedia of Geology, Second Edition presents in six volumes state-of-the-art reviews on the various aspects of geologic research, all of which have moved on considerably since the writing of the first edition. New areas of discussion include extinctions, origins of life, plate tectonics and its influence on faunal provinces, new types of mineral and hydrocarbon deposits, new methods of dating rocks, and geological processes. Users will find this to be a fundamental resource for teachers and students of geology, as well as researchers and non-geology professionals seeking up-to-date reviews of geologic research. Provides a comprehensive and accessible one-stop shop for information on the subject of geology, explaining methodologies and technical jargon used in the field Highlights connections between geology and other physical and biological sciences, tackling research problems that span multiple fields Fills a critical gap of information in a field that has seen significant progress in past years Presents an ideal reference for a wide range of scientists in earth and environmental areas of study

The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications
Author: Mats G. Larson
Publisher: Springer Science & Business Media
Total Pages: 403
Release: 2013-01-13
Genre: Computers
ISBN: 3642332870

Download The Finite Element Method: Theory, Implementation, and Applications Book in PDF, Epub and Kindle

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​