Pattern Formation In The Physical And Biological Sciences

Pattern Formation In The Physical And Biological Sciences
Author: H. Frederick Nijhout
Publisher: CRC Press
Total Pages: 318
Release: 2018-02-19
Genre: Mathematics
ISBN: 0429972997

Download Pattern Formation In The Physical And Biological Sciences Book in PDF, Epub and Kindle

This Lecture Notes Volume represents the first time any of the summer school lectures have been collected and published on a discrete subject rather than grouping all of a season's lectures together. This volume provides a broad survey of current thought on the problem of pattern formation. Spanning six years of summer school lectures, it includes articles which examine the origin and evolution of spatial patterns in physio-chemical and biological systems from a great diversity of theoretical and mechanistic perspectives. In addition, most of these pieces have been updated by their authors and three articles never previously published have been added.

Growth Patterns in Physical Sciences and Biology

Growth Patterns in Physical Sciences and Biology
Author: Jaun-Manuel Garcia-Ruiz
Publisher: Springer Science & Business Media
Total Pages: 417
Release: 2012-12-06
Genre: Science
ISBN: 1461528526

Download Growth Patterns in Physical Sciences and Biology Book in PDF, Epub and Kindle

During the past decade interest in the formation of complex disorderly patterns far from equilibrium has grown rapidly. This interest has been stim ulated by the development of new approaches (based primarily on fractal geometry) to the quantitative description of complex structures, increased understanding of non-linear phenomena and the introduction of a variety of models (such as the diffusion-limited aggregation model) that provide paradigms for non-equilibrium growth phenomena. Advances in computer technology have played a crucial role in both the experimental and theoret ical aspects of this enterprise. Substantial progress has been made towards the development of comprehensive understanding of non-equilibrium growth phenomena but most of our current understanding is based on simple com puter models. Pattern formation processes are important in almost all areas of science and technology, and, clearly, pattern growth pervades biology. Very often remarkably similar patterns are found in quite diverse systems. In some case (dielectric breakdown, electrodeposition, fluid-fluid displacement in porous media, dissolution patterns and random dendritic growth for example) the underlying causes of this similarity is quite well understood. In other cases (vascular trees, nerve cells and river networks for example) we do not yet know if a fundamental relationship exists between the mechanisms leading the formation of these structures.

Pattern Formation in Biology, Vision and Dynamics

Pattern Formation in Biology, Vision and Dynamics
Author: Alessandra Carbone
Publisher: World Scientific
Total Pages: 452
Release: 2000
Genre: Science
ISBN: 9789810237929

Download Pattern Formation in Biology, Vision and Dynamics Book in PDF, Epub and Kindle

Half a billion years of evolution have turned the eye into an unbelievable pattern detector. Everything we perceive comes in delightful multicolored forms. Now, in the age of science, we want to comprehend what and why we see. Two dozen outstanding biologists, chemists, physicists, psychologists, computer scientists and mathematicians met at the Institut d'Hautes Etudes Scientifiques in Bures-sur-Yvette, France. They expounded their views on the physical, biological and physiological mechanisms creating the tapestry of patterns we see in molecules, plants, insects, seashells, and even the human brain. This volume comprises surveys of different aspects of pattern formation and recognition, and is aimed at the scientifically minded reader.

Pattern Formations and Oscillatory Phenomena

Pattern Formations and Oscillatory Phenomena
Author: Shuichi Kinoshita
Publisher: Newnes
Total Pages: 274
Release: 2013-05-09
Genre: Science
ISBN: 012397299X

Download Pattern Formations and Oscillatory Phenomena Book in PDF, Epub and Kindle

Patterns and their formations appear throughout nature, and are studied to analyze different problems in science and make predictions across a wide range of disciplines including biology, physics, mathematics, chemistry, material science, and nanoscience. With the emergence of nanoscience and the ability for researchers and scientists to study living systems at the biological level, pattern formation research has become even more essential. This book is an accessible first of its kind guide for scientists, researchers, engineers, and students who require a general introduction to this research area, in order to gain a deeper analytical understanding of the most recent observations and experiments by top researchers in physics. Pattern Formations describes the most up-to-date status of this developing field and analyzes the physical phenomena behind a wide range of interesting topics commonly known in the scientific community. The study of pattern formations as a research field will continue to grow as scientists expand their understanding of naturally occurring patterns and mimic nature to help solve complex problems. This research area is becoming more highly recognized due to its contributions to signal processing, computer analysis, image processing, complex networks development, advancements in optics and photonics, crystallography, metallurgy, drug delivery (chemotherapy) and the further understanding of gene regulation. The only introductory reference book which places special emphasis on the theoretical analyses of experiments in this rapidly growing field of pattern formation A wide range of physical applications make this book highly interdisciplinary Explanations of observations and experiments deepen the readers understanding of this developing research field

Cellular Automaton Modeling of Biological Pattern Formation

Cellular Automaton Modeling of Biological Pattern Formation
Author: Andreas Deutsch
Publisher: Birkhäuser
Total Pages: 470
Release: 2018-03-09
Genre: Mathematics
ISBN: 1489979808

Download Cellular Automaton Modeling of Biological Pattern Formation Book in PDF, Epub and Kindle

This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In the final chapter, the authors critically discuss possibilities and limitations of the cellular automaton approach in modeling various biological applications, along with future research directions. Suggestions for research projects are provided throughout the book to encourage additional engagement with the material, and an accompanying simulator is available for readers to perform their own simulations on several of the models covered in the text. QR codes are included within the text for easy access to the simulator. With its accessible presentation and interdisciplinary approach, Cellular Automaton Modeling of Biological Pattern Formation is suitable for graduate and advanced undergraduate students in mathematical biology, biological modeling, and biological computing. It will also be a valuable resource for researchers and practitioners in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science. PRAISE FOR THE FIRST EDITION “An ideal guide for someone with a mathematical or physical background to start exploring biological modelling. Importantly, it will also serve as an excellent guide for experienced modellers to innovate and improve their methodologies for analysing simulation results.” —Mathematical Reviews

Modelling the Dynamics of Biological Systems

Modelling the Dynamics of Biological Systems
Author: Erik Mosekilde
Publisher: Springer Science & Business Media
Total Pages: 300
Release: 2012-12-06
Genre: Science
ISBN: 3642792901

Download Modelling the Dynamics of Biological Systems Book in PDF, Epub and Kindle

The development of a proper description of the living world today stands as one of the most significant challenges to physics. A variety of new experimental techniques in molecular biology, microbiol ogy, physiology and other fields of biological research constantly expand our knowledge and enable us to make increasingly more detailed functional and structural descriptions. Over the past decades, the amount and complexity of available information have multiplied dramatically, while at the same time our basic understanding of the nature of regulation, behavior, morphogenesis and evolution in the living world has made only modest progress. A key obstacle is clearly the proper handling of the available data. This requires a stronger emphasis on mathematical modeling through which the consistency of the adopted explanations can be checked, and general princi ples may be extracted. As an even more serious problem, however, it appears that the proper physical concepts for the development of a theoretically oriented biology have not hitherto been available. Classical mechanics and equilibrium thermody namics, for instance, are inappropriate and useless in some of the most essen tial biological contexts. Fortunately, there is now convincing evidence that the concepts and methods of the newly developed fields of nonlinear dynam ics and complex systems theory, combined with irreversible thermodynamics and far-from-equilibrium statistical mechanics will enable us to move ahead with many of these problems.

The Self-made Tapestry

The Self-made Tapestry
Author: Philip Ball
Publisher:
Total Pages: 316
Release: 2001
Genre: Nature
ISBN: 9780198502432

Download The Self-made Tapestry Book in PDF, Epub and Kindle

For centuries, scientists have struggled to understand the origins of the patterns and forms found in nature. Now, in this lucid and accessibly written book, Philip Ball applies state-of-the-art scientific understanding from the fields of biology, chemistry, geology, physics, and mathematics to these ancient mysteries, revealing how nature's seemingly complex patterns originate in simple physical laws. Tracing the history of scientific thought about natural patterns, Ball shows how common presumptions--for example, that complex form must be guided by some intelligence or that form always follows function--are erroneous and continue to mislead scientists today. He investigates specific patterns in depth, revealing that these designs are self-organized and that simple, local interactions between component parts produce motifs like spots, stripes, branches, and honeycombs. In the process, he examines the mysterious phenomenon of symmetry and why it appears--and breaks--in similar ways in different systems. Finally, he attempts to answer this profound question: why are some patterns universal? Illustrations throughout the text, many in full color, beautifully illuminate Ball's ideas.

Research at the Intersection of the Physical and Life Sciences

Research at the Intersection of the Physical and Life Sciences
Author: National Research Council
Publisher: National Academies Press
Total Pages: 122
Release: 2010-03-25
Genre: Science
ISBN: 0309147514

Download Research at the Intersection of the Physical and Life Sciences Book in PDF, Epub and Kindle

Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies.