Passive Measurement of Organic-Scintillator Neutron Signatures for Nuclear Safeguards Applications

Passive Measurement of Organic-Scintillator Neutron Signatures for Nuclear Safeguards Applications
Author:
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download Passive Measurement of Organic-Scintillator Neutron Signatures for Nuclear Safeguards Applications Book in PDF, Epub and Kindle

At nuclear facilities, domestically and internationally, most measurement systems used for nuclear materials' control and accountability rely on He-3 detectors. Due to resource shortages, alternatives to He-3 systems are needed. This paper presents preliminary simulation and experimental efforts to develop a fast-neutron-multiplicity counter based on liquid organic scintillators. This mission also provides the opportunity to broaden the capabilities of such safeguards measurement systems to improve current neutron-multiplicity techniques and expand the scope to encompass advanced nuclear fuels.

Passive Neutron Detection in Ports for Homeland Security Applications

Passive Neutron Detection in Ports for Homeland Security Applications
Author: Eowyn E Pedicini
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download Passive Neutron Detection in Ports for Homeland Security Applications Book in PDF, Epub and Kindle

The smuggling of special nuclear material (SNM) has long been a concern. In April 2009, President Obama declared that a terrorist acquiring a nuclear weapon was the most immediate threat to global security. The Second Line of Defense (SLD) initiative was stood up by the National Nuclear Security Administration to deter, detect, and interdict illicit trafficking of nuclear and radioactive materials across international borders and maritime shipping. The SLD initiative does not provide for the detection of SNM being carried on small, personal watercraft. Previous work examined the possibility of using active neutron detectors to induce fission in SNM and detect the response. This thesis examines the possibility of detecting SNM using passive 3He neutron detectors. Monte Carlo N-Particle (MCNP) simulations were run to determine the best detector configuration. Detecting sources at increasing depths, detecting moving sources and the effects of waves were also simulated in MCNP. Comparisons with experimental measurements showed that detectors parallel to the surface of water were best at detecting neutron sources below the surface. Additionally, stacking detectors and placing a cadmium sheet between the polyethylene blocks resulted in a greater ability to determine the height of a source by taking the ratio of count rates in the lower and upper detectors. Using this configuration, a source of strength 3.39 x 10^5 n/s could be detected to a depth of 12.00 in below the water surface. Count rates in the presence of waves did not average out to count rates taken above a flat plane of water. Detectors closer to the water performed worse than above a flat plane while detectors placed higher recorded more counts than above a flat plane. Moving sources were also simulated; sources under water, 3.00 ft from the detectors, and moving at 5.8 kts could be detected above background. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149402

Investigating the Anisotropic Scintillation Response in Organic Crystal Scintillator Detectors

Investigating the Anisotropic Scintillation Response in Organic Crystal Scintillator Detectors
Author: Patricia Frances Schuster
Publisher:
Total Pages: 129
Release: 2016
Genre:
ISBN:

Download Investigating the Anisotropic Scintillation Response in Organic Crystal Scintillator Detectors Book in PDF, Epub and Kindle

Organic scintillator materials have long been used as radiation detectors. They offer simultaneous detection of fast neutrons and gamma rays for applications in nuclear nonproliferation, international safeguards, and national security. The recent development of high quality stilbene crystals with excellent neutron-gamma pulse shape discrimination (PSD) has generated renewed interest in using crystalline materials. However, crystal organic scintillators are subject to a directional dependence in their response to heavy charged particle interactions, degrading their energy resolution for neutron measurements and worsening their PSD performance. This dissertation presents several studies that experimentally characterize the scintillation anisotropy in organic crystal scintillators. These include measurements of neutron, gamma-ray and cosmic muon interactions in anthracene, a historical benchmark among organic scintillator materials, to confirm and extend measurements previously available in the literature. The gamma-ray and muon measurements provide new experimental confirmation that no scintillation anisotropy is present in their interactions. Observations from these measurements have updated the hypothesis for the physical mechanism that is responsible for the scintillation anisotropy concluding that a relatively high dE/dx is required in order to produce a scintillation anisotropy. The directional dependence of the scintillation output in liquid and plastic materials was measured to experimentally confirm that no scintillation anisotropy correlated to detector orientation exists in amorphous materials. These observations confirm that the scintillation anisotropy is not due to an external effect on the measurement system, and that a fixed, repeating structure is required for a scintillation anisotropy. The directional dependence of the scintillation output in response to neutron interactions was measured in four stilbene crystals of various sizes and growth-methods. The scintillation anisotropy in these materials was approximately uniform, indicating that the crystal size, geometry, and growth method do not significantly impact the effect. Measurements of three additional pure crystals and two mixed crystals were made. These measurements showed that 1) the magnitude of the effect varies with energy and material, 2) the relationship between the light output and pulse shape anisotropy varies across materials, and 3) the effect in mixed materials is very complex. These measurements have informed the hypothesis of the mechanism that produces the directional dependence. By comparing the various relationships between the light output and pulse shape anisotropy across materials, these measurements indicate that the preferred directions of singlet and triplet excitation transport may be the same in some materials and different in other materials. The measurements performed in this work serve as a resource to groups who aim to correct for the scintillation anisotropy or employ it as a directional detection modality. Additionally, this work has advanced the understanding of what physical processes and properties dictate the magnitude and behavior of the scintillation anisotropy in a given material. It has added new information to the body of knowledge surrounding the scintillation mechanism in organic crystal scintillator materials. This information may be used to construct models to predict the scintillation anisotropy effect in materials that have not been experimentally characterized. Such work can contribute to work in producing a new generation of organic scintillator materials, advancing many applications in nuclear science and security.

Active Interrogation in Nuclear Security

Active Interrogation in Nuclear Security
Author: Igor Jovanovic
Publisher: Springer
Total Pages: 366
Release: 2018-06-07
Genre: Technology & Engineering
ISBN: 3319744674

Download Active Interrogation in Nuclear Security Book in PDF, Epub and Kindle

This volume constitutes the state-of-the-art in active interrogation, widely recognized as indispensable methods for addressing current and future nuclear security needs. Written by a leading group of science and technology experts, this comprehensive reference presents technologies and systems in the context of the fundamental physics challenges and practical requirements. It compares the features, limitations, technologies, and impact of passive and active measurement techniques; describes radiation sources for active interrogation including electron and ion accelerators, intense lasers, and radioisotope-based sources; and it describes radiation detectors used for active interrogation. Entire chapters are devoted to data acquisition and processing systems, modeling and simulation, data interpretation and algorithms, and a survey of working active measurement systems. Active Interrogation in Nuclear Security is structured to appeal to a range of audiences, including graduate students, active researchers in the field, and policy analysts. The first book devoted entirely to active interrogation Presents a focused review of the relevant physics Surveys available technology Analyzes scientific and technology trends Provides historical and policy context Igor Jovanovic is a Professor of Nuclear Engineering and Radiological Sciences at the University of Michigan and has previously also taught at Penn State University and Purdue University. He received his Ph.D. from University of California, Berkeley and worked as physicist at Lawrence Livermore National Laboratory. Dr. Jovanovic has made numerous contributions to the science and technology of radiation detection, as well as the radiation sources for use in active interrogation in nuclear security. He has taught numerous undergraduate and graduate courses in areas that include radiation detection, nuclear physics, and nuclear security. At University of Michigan Dr. Jovanovic is the director of Neutron Science Laboratory and is also associated with the Center for Ultrafast Optical Science. Anna Erickson is an Assistant Professor in the Nuclear and Radiological Engineering Program of the G.W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. Previously, she was a postdoctoral researcher in the Advanced Detectors Group at Lawrence Livermore National Laboratory. Dr. Erickson received her PhD from Massachusetts Institute of Technology with a focus on radiation detection for active interrogation applications. Her research interests focus on nuclear non-proliferation including antineutrino analysis and non-traditional detector design and characterization. She teaches courses in advanced experimental detection for reactor and nuclear nonproliferation applications, radiation dosimetry and fast reactor analysis.

Particle Detectors

Particle Detectors
Author: Hermann Kolanoski
Publisher: Oxford University Press
Total Pages: 949
Release: 2020-06-30
Genre: Science
ISBN: 0191899232

Download Particle Detectors Book in PDF, Epub and Kindle

This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.

Photoneutron Sources

Photoneutron Sources
Author: B. W. Sargent
Publisher:
Total Pages: 8
Release: 1946
Genre: Neutron sources
ISBN:

Download Photoneutron Sources Book in PDF, Epub and Kindle

Handbook of Nuclear Chemistry

Handbook of Nuclear Chemistry
Author: Attila Vértes
Publisher: Springer Science & Business Media
Total Pages: 3693
Release: 2010-12-10
Genre: Science
ISBN: 144190719X

Download Handbook of Nuclear Chemistry Book in PDF, Epub and Kindle

This revised and extended 6 volume handbook set is the most comprehensive and voluminous reference work of its kind in the field of nuclear chemistry. The Handbook set covers all of the chemical aspects of nuclear science starting from the physical basics and including such diverse areas as the chemistry of transactinides and exotic atoms as well as radioactive waste management and radiopharmaceutical chemistry relevant to nuclear medicine. The nuclear methods of the investigation of chemical structure also receive ample space and attention. The international team of authors consists of scores of world-renowned experts - nuclear chemists, radiopharmaceutical chemists and physicists - from Europe, USA, and Asia. The Handbook set is an invaluable reference for nuclear scientists, biologists, chemists, physicists, physicians practicing nuclear medicine, graduate students and teachers - virtually all who are involved in the chemical and radiopharmaceutical aspects of nuclear science. The Handbook set also provides further reading via the rich selection of references.

Particle Physics Reference Library

Particle Physics Reference Library
Author: Christian W. Fabjan
Publisher: Springer Nature
Total Pages: 1083
Release: 2020
Genre: Elementary particles (Physics).
ISBN: 3030353184

Download Particle Physics Reference Library Book in PDF, Epub and Kindle

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access

14 MeV Neutrons

14 MeV Neutrons
Author: Vladivoj Valkovic
Publisher: CRC Press
Total Pages: 500
Release: 2015-08-25
Genre: Science
ISBN: 1482238012

Download 14 MeV Neutrons Book in PDF, Epub and Kindle

Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the envir