Particle Populations and High Energy Emission in Pulsar Wind Nebulae

Particle Populations and High Energy Emission in Pulsar Wind Nebulae
Author: Albert Adam Van Etten
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download Particle Populations and High Energy Emission in Pulsar Wind Nebulae Book in PDF, Epub and Kindle

Energetic particles streaming out from rapidly spinning neutron stars radiate across the electromagnetic spectrum, creating a pulsar wind nebula (PWN). Many PWNe are spatially resolved in the radio, X-ray, and even gamma-ray wavebands, and thereby provide an excellent laboratory to study not only pulsar winds and dynamics, but also shock processes, magnetic field evolution, and particle transport. Single-zone spectral energy distribution (SED) models have long been used to study the global properties of PWNe, but to fully take advantage of high spatial resolution data one must move beyond these simple models. Supported by multiple X-ray PWN observations, we describe multi-zone time-dependent SED model fitting, with particular emphasis on the spatial variations within nebulae. The SED model constrains the wind velocity profile, magnetic field profile, age and spin-down history of the central pulsar, and the PWN injection spectrum. These constraints are of great value to the study of the gamma-ray pulsar population, and to investigations of particle acceleration and the cosmic ray spectrum. The large size of many PWNe in the very high energy gamma-ray (TeV) regime is indicative of significant particle transport over the pulsar lifetime, and in the case study of HESS J1825-137 we find that rapid diffusion of high energy particles is required to match the multi-wavelength data.

High-Energy Emission from Pulsars and their Systems

High-Energy Emission from Pulsars and their Systems
Author: Nanda Rea
Publisher: Springer Science & Business Media
Total Pages: 656
Release: 2011-02-04
Genre: Science
ISBN: 3642172512

Download High-Energy Emission from Pulsars and their Systems Book in PDF, Epub and Kindle

The aim of the inaugural meeting of the Sant Cugat Forum on Astrophysics was to address, in a global context, the current understanding of and challenges in high-energy emissions from isolated and non-isolated neutron stars, and to confront the theoretical picture with observations of both the Fermi satellite and the currently operating ground-based Cherenkov telescopes. Participants have also discussed the prospects for possible observations with planned instruments across the multi-wavelength spectrum (e.g. SKA, LOFAR, E-VLT, IXO, CTA) and how they will impact our theoretical understanding of these systems. In keeping with the goals of the Forum, this book not only represents the proceedings of the meeting, but also a reflection on the state-of-the-art in the topic.

Extreme Particle Acceleration in Microquasar Jets and Pulsar Wind Nebulae with the MAGIC Telescopes

Extreme Particle Acceleration in Microquasar Jets and Pulsar Wind Nebulae with the MAGIC Telescopes
Author: Alba Fernández Barral
Publisher: Springer
Total Pages: 268
Release: 2018-10-12
Genre: Science
ISBN: 3319975382

Download Extreme Particle Acceleration in Microquasar Jets and Pulsar Wind Nebulae with the MAGIC Telescopes Book in PDF, Epub and Kindle

This exhaustive work sheds new light on unsolved questions in gamma-ray astrophysics. It presents not only a complete introduction to the non-thermal Universe, but also a description of the Imaging Atmospheric Cherenkov technique and the MAGIC telescopes. The Fermi-LAT satellite and the HAWC Observatory are also described, as results from both are included. The physics section of the book is divided into microquasars and pulsar wind nebulae (PWNe), and includes extended overviews of both. In turn, the book discusses constraints on particle acceleration and gamma-ray production in microquasar jets, based on the analyses of MAGIC data on Cygnus X-1, Cygnus X-3 and V404 Cygni. Moreover, it presents the discovery of high-energy gamma-ray emissions from Cygnus X-1, using Fermi-LAT data. The book includes the first joint work between MAGIC, Fermi-LAT and HAWC, and discusses the hypothetical PWN nature of the targets in depth. It reports on a PWN population study that discusses, for the first time, the importance of the surrounding medium for gamma-ray production, and in closing presents technical work on the first Large-Size-Telescope (LST; CTA Collaboration), along with a complete description of the camera.

Pulsar Wind Nebulae at High Energies

Pulsar Wind Nebulae at High Energies
Author:
Publisher:
Total Pages: 122
Release: 2014
Genre:
ISBN:

Download Pulsar Wind Nebulae at High Energies Book in PDF, Epub and Kindle

Pulsar wind nebulae (PWNe) are the most abundant TeV gamma-ray emitters in the Milky Way. The radiative emission of these objects is powered by fast-rotating pulsars, which donate parts of their rotational energy into winds of relativistic particles. This thesis presents an in-depth study of the detected population of PWNe at high energies. To outline general trends regarding their evolutionary behaviour, a time-dependent model is introduced and compared to the available data. In particular, this work presents two exceptional PWNe which protrude from the rest of the population, namely the Crab Nebula and N 157B. Both objects are driven by pulsars with extremely high rotational energy loss rates. Accordingly, they are often referred to as energetic twins. Modelling the non-thermal multi-wavelength emission of N157B gives access to specific properties of this object, like the magnetic field inside the nebula. Comparing the derived parameters to those of the Crab Nebula reveals large intrinsic differences between the two PWNe. Possible origins of these differences are discussed in context of the resembling pulsars. Compared to the TeV gamma-ray regime, the number of detected PWNe is much smaller in the MeV-GeV gamma-ray range. In the latter range, the Crab Nebula stands out by the recent detection of gamma-ray flares. In general, the measured flux enhancements on short time scales of days to weeks were not expected in the theoretical understanding of PWNe. In this thesis, the variability of the Crab Nebula is analysed using data from the Fermi Large Area Telescope (Fermi-LAT). For the presented analysis, a new gamma-ray reconstruction method is used, providing a higher sensitivity and a lower energy threshold compared to previous analyses. The derived gamma-ray light curve of the Crab Nebula is investigated for flares and periodicity. The detected flares are analysed regarding their energy spectra, and their variety and commonalities are discussed. In addition, a dedicated analysis of the flare which occurred in March 2013 is performed. The derived short-term variability time scale is roughly 6h, implying a small region inside the Crab Nebula to be responsible for the enigmatic flares. The most promising theories explaining the origins of the flux eruptions and gamma-ray variability are discussed in detail. In the technical part of this work, a new analysis framework is presented. The introduced software, called gammalib/ctools, is currently being developed for the future CTA observa- tory. The analysis framework is extensively tested using data from the H. E. S. S. experiment. To conduct proper data analysis in the likelihood framework of gammalib/ctools, a model describing the distribution of background events in H.E.S.S. data is presented. The software provides the infrastructure to combine data from several instruments in one analysis. To study the gamma-ray emitting PWN population, data from Fermi-LAT and H. E. S. S. are combined in the likelihood framework of gammalib/ctools. In particular, the spectral peak, which usually lies in the overlap energy regime between these two instruments, is determined with the presented analysis framework. The derived measurements are compared to the predictions from the time-dependent model. The combined analysis supports the conclusion of a diverse population of gamma-ray emitting PWNe.

Very-high-energy Gamma-ray Observations of Pulsar Wind Nebulae and Cataclysmic Variable Stars with MAGIC and Development of Trigger Systems for IACTs

Very-high-energy Gamma-ray Observations of Pulsar Wind Nebulae and Cataclysmic Variable Stars with MAGIC and Development of Trigger Systems for IACTs
Author: Rubén López Coto
Publisher: Springer
Total Pages: 241
Release: 2016-09-29
Genre: Science
ISBN: 3319447513

Download Very-high-energy Gamma-ray Observations of Pulsar Wind Nebulae and Cataclysmic Variable Stars with MAGIC and Development of Trigger Systems for IACTs Book in PDF, Epub and Kindle

This thesis is a comprehensive work that addresses many of the open questions currently being discusssed in the very-high-energy (VHE) gamma-ray community. It presents a detailed description of the MAGIC telescope together with a glimpse of the future Cherenkov Telescope Array (CTA). One section is devoted to the design, development and characterization of trigger systems for current and future imaging atmospheric Cherenkov telescopes. The book also features a state-of-the-art description of pulsar wind nebula (PWN) systems, the study of the multi-TeV spectrum of the Crab nebula, as well as the discovery of VHE gamma rays at the multiwavelength PWN 3C 58, which were sought at these wavelengths for more than twenty years. It also includes the contextualization of this discovery amongst the current population of VHE gamma-ray PWNe. Cataclysmic variable stars represent a new source of gamma ray energies, and are also addressed here. In closing, the thesis reports on the systematic search for VHE gamma-ray emissions of AE Aquarii in a multiwavelength context and the search for VHE gamma-ray variability of novae during outbursts at different wavelengths.

Revealing the Most Energetic Light from Pulsars and Their Nebulae

Revealing the Most Energetic Light from Pulsars and Their Nebulae
Author: David Carreto Fidalgo
Publisher: Springer
Total Pages: 208
Release: 2019-07-17
Genre: Science
ISBN: 3030241947

Download Revealing the Most Energetic Light from Pulsars and Their Nebulae Book in PDF, Epub and Kindle

This book reports on the extraordinary observation of TeV gamma rays from the Crab Pulsar, the most energetic light ever detected from this type of object. It presents detailed information on the painstaking analysis of the unprecedentedly large dataset from the MAGIC telescopes, and comprehensively discusses the implications of pulsed TeV gamma rays for state-of-the-art pulsar emission models. Using these results, the book subsequently explores new testing methodologies for Lorentz Invariance Violation, in terms of a wavelength-dependent speed of light. The book also covers an updated search for Very-High-Energy (VHE), >100 GeV, emissions from millisecond pulsars using the Large Area Telescope on board the Fermi satellite, as well as a study on the promising Pulsar Wind Nebula candidate PSR J0631. The observation of VHE gamma rays is essential to studying the non-thermal sources of radiation in our Universe. Rotating neutron stars, also known as pulsars, are an extreme source class known to emit VHE gamma rays. However, to date only two pulsars have been detected with emissions above 100 GeV, and our understanding of their emission mechanism is still lacking.

The Incandescent Remains of Stellar Death

The Incandescent Remains of Stellar Death
Author: Katie Amanda Auchettl
Publisher:
Total Pages: 284
Release: 2015
Genre:
ISBN:

Download The Incandescent Remains of Stellar Death Book in PDF, Epub and Kindle

When a star dies, it leaves a mark on its surrounding environment. The energy from the supernova explosion forms an expanding shock wave that interacts with interstellar and circumstellar material, creating what we know as a supernova remnant (SNR). If the original star has a mass that is greater than or equal to 8 solar masses, this can also lead to the formation of a rapidly rotating neutron star called a pulsar. As these objects evolve, they interact with the surrounding environment, producing non-thermal and thermal emission. For an SNR, its non-thermal emission arises from a population of relativistic particles being accelerated at the shock front of the SNR, while its thermal emission arises from the shock front heating ejecta and and swept-up interstellar medium to X-ray emitting temperatures. For pulsars, their non-thermal emission arises from relativistic particles being accelerated at the termination shock of a pulsar wind. These particles interact with surrounding magnetic fields and ambient photon fields producing synchrotron and inverse Compton emission which we observe as a pulsar wind nebula (PWN), while its thermal emission arises from the surface of the neutron star. These properties of SNRs and pulsars provide a unique window into studying the acceleration, injection, propagation and interaction of highly energetic particles called cosmic rays with the interstellar medium. In addition, they providing information about the evolution, and dynamics of these objects; properties of the shock fronts; details about the original progenitor star; and the impact that these objects have on their surroundings. The research presented here focuses on analysing the intimate connection between cosmic rays, the non-thermal emission arising from SNRs interacting with molecular clouds, and pulsar wind nebulae; as well as analysing the observational and evolutionary properties of these objects. In this thesis we model the propagation of cosmic rays through the Galaxy in an attempt to characterise a standard cosmic ray background with uncertainties, to reveal the origin of the cosmic ray electron positron anomaly. Furthermore, we analyse the gamma-ray emission from SNRs Kes 79 and MSH 11-61A, which are known to be interacting with molecular clouds, as well as the non-thermal X-ray emission arising from the PWN of PSR J1741-2054. We find that the emission from both SNRs most likely arises from the decay of neutral pions that resulted from the interaction of relativistic ions which are accelerated at the shock-front of a SNR, with ambient material. For PSR J1741-2054, we characterise the properties, minimum magnetic field and minimum energy of the particle population that produces the observed diffuse synchrotron emission that surrounds and trails the pulsar.In addition, we characterise the X-ray emission arising from Kes 79, MSH 11-61A and PSR J1741-2054, in an attempt to shed light on the origin and nature of these objects and their emission. Using X-ray data from XMM-Newton and Suzaku respectively, we probe the temperature, ionisation state, and elemental abundance of the shocked gas of each SNR. This allows us to determine their evolutionary properties, properties of the shock, and mass of the original progenitor; and constrain the density of the X-ray emitting plasma. Using Chandra, we determined the temperature of PSR J1741-2054, as well as characterised its proper motion, velocity, direction of motion, and presence of small scale structure immediately surrounding the pulsar.

Modelling Pulsar Wind Nebulae

Modelling Pulsar Wind Nebulae
Author: Diego F. Torres
Publisher: Springer
Total Pages: 318
Release: 2017-11-13
Genre: Science
ISBN: 3319630318

Download Modelling Pulsar Wind Nebulae Book in PDF, Epub and Kindle

In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsars, and map in exquisite detail the radiation surrounding them for several hundreds of nebulae. By carefully reviewing the state of the art in pulsar nebula research this book prepares scientists and PhD students for future work and progress in the field.

The Multi-Messenger Approach to High-Energy Gamma-Ray Sources

The Multi-Messenger Approach to High-Energy Gamma-Ray Sources
Author: Josep M. Paredes
Publisher: Springer Science & Business Media
Total Pages: 496
Release: 2007-11-12
Genre: Science
ISBN: 140206117X

Download The Multi-Messenger Approach to High-Energy Gamma-Ray Sources Book in PDF, Epub and Kindle

This book provides a theoretical and observational overview of the state of the art of gamma-ray astrophysics, and their impact and connection with the physics of cosmic rays and neutrinos. With the aim of shedding new and fresh light on the problem of the nature of the gamma-ray sources, particularly those yet unidentified, this book summarizes contributions to a workshop that continues today.

Handbook of Supernovae

Handbook of Supernovae
Author: Athem W. Alsabti
Publisher:
Total Pages:
Release:
Genre: Supernovae
ISBN: 9783319207940

Download Handbook of Supernovae Book in PDF, Epub and Kindle