Organic Rankine Cycle (ORC) Power Systems

Organic Rankine Cycle (ORC) Power Systems
Author: Ennio Macchi
Publisher: Woodhead Publishing
Total Pages: 700
Release: 2016-08-24
Genre: Technology & Engineering
ISBN: 0081005113

Download Organic Rankine Cycle (ORC) Power Systems Book in PDF, Epub and Kindle

Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development. The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application. Provides a thorough introduction to ORC power systems Contains detailed chapters on ORC plant components Includes a section focusing on ORC design and optimization Reviews key applications of ORC technologies, including cogeneration from biomass, electricity generation from geothermal reservoirs and concentrating solar power installations, waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes Various chapters are authored by well-known specialists from Academia and ORC manufacturers

Organic Rankine Cycles for Waste Heat Recovery

Organic Rankine Cycles for Waste Heat Recovery
Author: Silvia Lasala
Publisher: BoD – Books on Demand
Total Pages: 122
Release: 2020-05-13
Genre: Science
ISBN: 1789854733

Download Organic Rankine Cycles for Waste Heat Recovery Book in PDF, Epub and Kindle

This book comprises five chapters on developed research activities on organic Rankine cycles. The first section aims to provide researchers with proper modelling (Chapter 1) and experimental (Chapter 2) tools to calculate and empirically validate thermophysical properties of ORC working fluids. The second section introduces some theoretical and experimental studies of organic Rankine cycles for waste heat recovery applications: a review of different supercritical ORC (Chapter 3), ORC for waste heat recovery from fossil-fired power plants (Chapter 4), the experimental detailed characterization of a small-scale ORC of 3 kW operating with either pure fluids or mixtures (Chapter 5).

ANL/CNSV

ANL/CNSV
Author:
Publisher:
Total Pages: 64
Release: 1981
Genre:
ISBN:

Download ANL/CNSV Book in PDF, Epub and Kindle

Organic Rankine Cycle Technology for Heat Recovery

Organic Rankine Cycle Technology for Heat Recovery
Author: Enhua Wang
Publisher: BoD – Books on Demand
Total Pages: 202
Release: 2018-11-07
Genre: Science
ISBN: 1789843472

Download Organic Rankine Cycle Technology for Heat Recovery Book in PDF, Epub and Kindle

This book on organic Rankine cycle technology presents nine chapters on research activities covering the wide range of current issues on the organic Rankine cycle. The first section deals with working fluid selection and component design. The second section is related to dynamic modeling, starting from internal combustion engines to industrial power plants. The third section discusses industrial applications of waste heat recovery, including internal combustion engines, LNG, and waste water. A comprehensive analysis of the technology and application of organic Rankine cycle systems is beyond the aim of the book. However, the content of this volume can be useful for scientists and students to broaden their knowledge of technologies and applications of organic Rankine cycle systems.

Waste Heat Recovery in Process Industries

Waste Heat Recovery in Process Industries
Author: Hussam Jouhara
Publisher: John Wiley & Sons
Total Pages: 290
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3527348565

Download Waste Heat Recovery in Process Industries Book in PDF, Epub and Kindle

Explore modern waste heat recovery technology across a variety of industries In Waste Heat Recovery in Process Industries, esteemed thermal engineer Hussam Jouhara delivers an organized and comprehensive exploration of waste heat recovery systems with a focus on industrial applications in different temperature ranges. The author describes various waste heat recovery systems, like heat exchangers, waste heat boilers, air preheaters, direct electrical conversion devices, and thermal storage. The book also offers discussions of the technologies and applications relevant to different temperature ranges present in industrial settings along with revealing case studies from various industries. Waste Heat Recovery in Process Industries examines a variety of industries, from steel to ceramics, chemicals, and food, and how plants operating in these sectors can use waste heat to improve their energy efficiency, reduce energy costs, and minimize their carbon footprint. The book also offers: A thorough introduction to waste heat recovery systems, including recuperative and regenerative burners, heat exchangers, waste heat boilers, air preheaters, and heat pumps Comprehensive explorations of low temperature applications, below 100°C, including advantages and drawbacks, as well as illustrative case studies Practical discussions of medium temperature applications, between 100°C and 400°C, including case studies In-depth examination of high temperature applications, above 400°C, including several case studies Perfect for chemical, mechanical, process, and power engineers, Waste Heat Recovery in Process Industries is also an ideal resource for professionals working in the chemical, metal processing, pharmaceutical, and food industries.

Thermal Cycles of Heat Recovery Power Plants

Thermal Cycles of Heat Recovery Power Plants
Author: Tangellapalli Srinivas
Publisher: Bentham Science Publishers
Total Pages: 291
Release: 2021-04-02
Genre: Technology & Engineering
ISBN: 9811803757

Download Thermal Cycles of Heat Recovery Power Plants Book in PDF, Epub and Kindle

Thermal Cycles of Heat Recovery Power Plants presents information about thermal power plant cycles suitable for waste heat recovery (WHR) in modern power plants. The author covers five thermal power cycles: organic Rankine cycle (ORC), organic flash cycle (OFC), Kalina cycle (KC), steam Rankine cycle (SRC) and steam flash cycle (SFC) with the working fluids of R123, R124, R134a, R245fa, R717 and R407C. The handbook helps the reader to understand the latest power plant technologies suitable for utilizing the waste heat generated by thermal industrial processes. Key Features: - Comprehensive modeling, simulation, analysis and optimization of 5 power cycle types with different working fluids - Clear information about the processes and solutions of thermal power cycles to augment the power generation with improved energy conversion. - Simple, reader friendly presentation - bibliographic references after each chapter for further reading This handbook is suitable for engineering students in degree courses and professionals in training programs who require resources on advanced thermal power plant operation and optimal waste heat recovery processes, respectively. It is also a handy reference for energy conversion efficiency in heat recovery power plants. The book is also of interest to any researchers interested in industrial applications of thermodynamic processes.

Thermal Design and Optimization

Thermal Design and Optimization
Author: Adrian Bejan
Publisher: John Wiley & Sons
Total Pages: 562
Release: 1995-12-12
Genre: Technology & Engineering
ISBN: 9780471584674

Download Thermal Design and Optimization Book in PDF, Epub and Kindle

A comprehensive and rigorous introduction to thermal system designfrom a contemporary perspective Thermal Design and Optimization offers readers a lucid introductionto the latest methodologies for the design of thermal systems andemphasizes engineering economics, system simulation, andoptimization methods. The methods of exergy analysis, entropygeneration minimization, and thermoeconomics are incorporated in anevolutionary manner. This book is one of the few sources available that addresses therecommendations of the Accreditation Board for Engineering andTechnology for new courses in design engineering. Intended forclassroom use as well as self-study, the text provides a review offundamental concepts, extensive reference lists, end-of-chapterproblem sets, helpful appendices, and a comprehensive case studythat is followed throughout the text. Contents include: * Introduction to Thermal System Design * Thermodynamics, Modeling, and Design Analysis * Exergy Analysis * Heat Transfer, Modeling, and Design Analysis * Applications with Heat and Fluid Flow * Applications with Thermodynamics and Heat and Fluid Flow * Economic Analysis * Thermoeconomic Analysis and Evaluation * Thermoeconomic Optimization Thermal Design and Optimization offers engineering students,practicing engineers, and technical managers a comprehensive andrigorous introduction to thermal system design and optimizationfrom a distinctly contemporary perspective. Unlike traditionalbooks that are largely oriented toward design analysis andcomponents, this forward-thinking book aligns itself with anincreasing number of active designers who believe that moreeffective, system-oriented design methods are needed. Thermal Design and Optimization offers a lucid presentation ofthermodynamics, heat transfer, and fluid mechanics as they areapplied to the design of thermal systems. This book broadens thescope of engineering design by placing a strong emphasis onengineering economics, system simulation, and optimizationtechniques. Opening with a concise review of fundamentals, itdevelops design methods within a framework of industrialapplications that gradually increase in complexity. Theseapplications include, among others, power generation by large andsmall systems, and cryogenic systems for the manufacturing,chemical, and food processing industries. This unique book draws on the best contemporary thinking aboutdesign and design methodology, including discussions of concurrentdesign and quality function deployment. Recent developments basedon the second law of thermodynamics are also included, especiallythe use of exergy analysis, entropy generation minimization, andthermoeconomics. To demonstrate the application of important designprinciples introduced, a single case study involving the design ofa cogeneration system is followed throughout the book. In addition, Thermal Design and Optimization is one of the best newsources available for meeting the recommendations of theAccreditation Board for Engineering and Technology for more designemphasis in engineering curricula. Supported by extensive reference lists, end-of-chapter problemsets, and helpful appendices, this is a superb text for both theclassroom and self-study, and for use in industrial design,development, and research. A detailed solutions manual is availablefrom the publisher.

The Development and Application of a Small-Scale Organic Rankine Cycle for Waste Heat Recovery

The Development and Application of a Small-Scale Organic Rankine Cycle for Waste Heat Recovery
Author: Tzu-Chen Hung
Publisher:
Total Pages: 0
Release: 2020
Genre: Electronic books
ISBN:

Download The Development and Application of a Small-Scale Organic Rankine Cycle for Waste Heat Recovery Book in PDF, Epub and Kindle

Power conversion systems based on organic Rankine cycles have been identified as a potential technology especially in converting low-grade waste heat into electricity as well as in small-scale biomass, solar, or geothermal power plants. The theoretical analysis can guide the ORC design, but cannot predict accurately the system performance. Actually, the operation characteristics of every component have a vital effect on the system performance. This chapter presents the detailed operation characteristic of a small-scale ORC. The effects of the operation parameters, the mixture working fluid and the operation strategy on system overall performance are addressed. It can be concluded that improving the system overall performance should give priority to increase the pressure drop. Whether the mixtures exhibit better thermodynamic performance than the pure working fluids depend on the operation parameters and mass fraction of mixtures. The mixture working fluids obtain a higher expander shaft power but a relatively higher BWR. The expander rotating speed for standalone operation strategy keeps rising from 2320 to 2983 rpm, whereas that of grid connect operation strategy keeps constant of 3600 rpm.

Organic Rankine Cycle for Energy Recovery System

Organic Rankine Cycle for Energy Recovery System
Author: Andrea De Pascale
Publisher: MDPI
Total Pages: 192
Release: 2020-06-18
Genre: Technology & Engineering
ISBN: 3039363948

Download Organic Rankine Cycle for Energy Recovery System Book in PDF, Epub and Kindle

The rising trend in the global energy demand poses new challenges to humankind. The energy and mechanical engineering sectors are called to develop new and more environmentally friendly solutions to harvest residual energy from primary production processes. The Organic Rankine Cycle (ORC) is an emerging energy system for power production and waste heat recovery. In the near future, this technology can play an increasing role within the energy generation sectors and can help achieve the carbon footprint reduction targets of many industrial processes and human activities. This Special Issue focuses on selected research and application cases of ORC-based waste heat recovery solutions. Topics included in this publication cover the following aspects: performance modeling and optimization of ORC systems based on pure and zeotropic mixture working fluids; applications of waste heat recovery via ORC to gas turbines and reciprocating engines; optimal sizing and operation of ORC under combined heat and power and district heating application; the potential of ORC on board ships and related issues; life cycle analysis for biomass application; ORC integration with supercritical CO2 cycle; and the proper design of the main ORC components, including fluid dynamics issues. The current state of the art is considered and some cutting-edge ORC technology research activities are examined in this book.