Optimal Gate-width Setting for Passive Neutrons Multiplicity Counting

Optimal Gate-width Setting for Passive Neutrons Multiplicity Counting
Author:
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Optimal Gate-width Setting for Passive Neutrons Multiplicity Counting Book in PDF, Epub and Kindle

When setting up a passive neutron coincidence counter it is natural to ask what coincidence gate settings should be used to optimize the counting precision. If the gate width is too short then signal is lost and the precision is compromised because in a given period only a few coincidence events will be observed. On the other hand if the gate is too large the signal will be maximized but it will also be compromised by the high level of random pile-up or Accidental coincidence events which must be subtracted. In the case of shift register electronics connected to an assay chamber with an exponential dieaway profile operating in the regime where the Accidentals rate dominates the Reals coincidence rate but where dead-time is not a concern, simple arguments allow one to show that the relative precision on the net Reals rate is minimized when the coincidence gate is set to about 1.2 times the lie dieaway time of the system. In this work we show that making the same assumptions it is easy to show that the relative precision on the Triples rates is also at a minimum when the relative precision of the Doubles (or Reals) is at a minimum. Although the analysis is straightforward to our knowledge such a discussion has not been documented in the literature before. Actual measurement systems do not always behave in the ideal we choose to model them. Fortunately however the variation in the relative precision as a function of gate width is rather flat for traditional safeguards counters and so the performance is somewhat forgiving of the exact choice. The derivation further serves to delineate the important parameters which determine the relative counting precision of the Doubles and Triples rates under the regime considered. To illustrate the similarities and differences we consider the relative standard deviation that might be anticipated for a passive correlation count of an axial section of a spent nuclear fuel assembly under practically achievable conditions.

The Impact of Gate Width Setting and Gate Utilization Factors on Plutonium Assay in Passive Correlated Neutron Counting

The Impact of Gate Width Setting and Gate Utilization Factors on Plutonium Assay in Passive Correlated Neutron Counting
Author:
Publisher:
Total Pages: 9
Release: 2015
Genre:
ISBN:

Download The Impact of Gate Width Setting and Gate Utilization Factors on Plutonium Assay in Passive Correlated Neutron Counting Book in PDF, Epub and Kindle

In the field of nuclear safeguards, passive neutron multiplicity counting (PNMC) is a method typically employed in non-destructive assay (NDA) of special nuclear material (SNM) for nonproliferation, verification and accountability purposes. PNMC is generally performed using a well-type thermal neutron counter and relies on the detection of correlated pairs or higher order multiplets of neutrons emitted by an assayed item. To assay SNM, a set of parameters for a given well-counter is required to link the measured multiplicity rates to the assayed item properties. Detection efficiency, die-away time, gate utilization factors (tightly connected to die-away time) as well as optimum gate width setting are among the key parameters. These parameters along with the underlying model assumptions directly affect the accuracy of the SNM assay. In this paper we examine the role of gate utilization factors and the single exponential die-away time assumption and their impact on the measurements for a range of plutonium materials. In addition, we examine the importance of item-optimized coincidence gate width setting as opposed to using a universal gate width value. Finally, the traditional PNMC based on multiplicity shift register electronics is extended to Feynman-type analysis and application of this approach to Pu mass assay is demonstrated.

Analytical Expressions for the Gate Utilization Factors of Passive Multiplicity Counters Including Signal Build-up

Analytical Expressions for the Gate Utilization Factors of Passive Multiplicity Counters Including Signal Build-up
Author:
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Analytical Expressions for the Gate Utilization Factors of Passive Multiplicity Counters Including Signal Build-up Book in PDF, Epub and Kindle

In the realm of nuclear safeguards, passive neutron multiplicity counting using shift register pulse train analysis to nondestructively quantify Pu in product materials is a familiar and widely applied technique. The approach most commonly taken is to construct a neutron detector consisting of 3He filled cylindrical proportional counters embedded in a high density polyethylene moderator. Fast neutrons from the item enter the moderator and are quickly slowed down, on timescales of the order of 1-2 [mu]s, creating a thermal population which then persists typically for several 10's [mu]s and is sampled by the 3He detectors. Because the initial transient is of comparatively short duration it has been traditional to treat it as instantaneous and furthermore to approximate the subsequent capture time distribution as exponential in shape. With these approximations simple expressions for the various Gate Utilization Factors (GUFs) can be obtained. These factors represent the proportion of time correlated events i.e. Doubles and Triples signal present in the pulse train that is detected by the coincidence gate structure chosen (predelay and gate width settings of the multiplicity shift register). More complicated expressions can be derived by generalizing the capture time distribution to multiple time components or harmonics typically present in real systems. When it comes to applying passive neutron multiplicity methods to extremely intense (i.e. high emission rate and highly multiplying) neutron sources there is a drive to use detector types with very fast response characteristics in order to cope with the high rates. In addition to short pulse width, detectors with a short capture time profile are also desirable so that a short coincidence gate width can be set in order to reduce the chance or Accidental coincidence signal. In extreme cases, such as might be realized using boron loaded scintillators, the dieaway time may be so short that the build-up (thermalization transient) within the detector cannot be ignored. Another example where signal build-up might be observed is when a 3He based system is used to track the evolution of the time correlated signal created by a higher multiplying item within a reflective configuration such as the measurement of a spent fuel assembly. In this work we develop expressions for the GUFs which include signal build-up.

Handbook of Radioactivity Analysis

Handbook of Radioactivity Analysis
Author: Michael F. L'Annunziata
Publisher: Academic Press
Total Pages: 1076
Release: 2020-03-07
Genre: Science
ISBN: 0128143967

Download Handbook of Radioactivity Analysis Book in PDF, Epub and Kindle

Handbook of Radioactivity Analysis: Radiation Physics and Detectors, Volume One, and Radioanalytical Applications, Volume Two, Fourth Edition, constitute an authoritative reference on the principles, practical techniques and procedures for the accurate measurement of radioactivity - everything from the very low levels encountered in the environment, to higher levels measured in radioisotope research, clinical laboratories, biological sciences, radionuclide standardization, nuclear medicine, nuclear power, and fuel cycle facilities, and in the implementation of nuclear forensic analysis and nuclear safeguards. It includes sample preparation techniques for all types of matrices found in the environment, including soil, water, air, plant matter and animal tissue, and surface swipes.Users will find the latest advances in the applications of radioactivity analysis across various fields, including environmental monitoring, radiochemical standardization, high-resolution beta imaging, automated radiochemical separation, nuclear forensics, and more. Spans two volumes, Radiation Physics and Detectors and Radioanalytical Applications Includes a new chapter on the analysis of environmental radionuclides Provides the latest advances in the applications of liquid and solid scintillation analysis, alpha- and gamma spectrometry, mass spectrometric analysis, Cherenkov counting, flow-cell radionuclide analysis, radionuclide standardization, aerosol analysis, high-resolution beta imaging techniques, analytical techniques in nuclear forensics, and nuclear safeguards Describes the timesaving techniques of computer-controlled automatic separation and activity analysis of radionuclides Provides an extensive table of the radiation characteristics of most radionuclides of interest for the radioanalytical chemist

Safeguards Techniques and Equipment

Safeguards Techniques and Equipment
Author: International Atomic Energy Agency
Publisher:
Total Pages: 146
Release: 2011
Genre: Environmental sampling
ISBN: 9789201189103

Download Safeguards Techniques and Equipment Book in PDF, Epub and Kindle

The 1990s saw significant developments in the global non-proliferation landscape, resulting in a new period of safeguards development. The current publication, which is the second revision and update of IAEA/NVS/1, is intended to give a full and balanced description of the safeguards techniques and equipment used for nuclear material accountancy, containment and surveillance measures, environmental sampling, and data security. New features include a section on new and novel technologies. As new verification measures continue to be developed, the material in this book will be reviewed periodically and updated versions issued.

Particle Physics Reference Library

Particle Physics Reference Library
Author: Christian W. Fabjan
Publisher: Springer Nature
Total Pages: 1083
Release: 2020
Genre: Elementary particles (Physics).
ISBN: 3030353184

Download Particle Physics Reference Library Book in PDF, Epub and Kindle

This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access

14 MeV Neutrons

14 MeV Neutrons
Author: Vladivoj Valkovic
Publisher: CRC Press
Total Pages: 500
Release: 2015-08-25
Genre: Science
ISBN: 1482238012

Download 14 MeV Neutrons Book in PDF, Epub and Kindle

Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the envir

Plastic Scintillators

Plastic Scintillators
Author: Matthieu Hamel
Publisher: Springer Nature
Total Pages: 647
Release: 2021-07-10
Genre: Science
ISBN: 3030734889

Download Plastic Scintillators Book in PDF, Epub and Kindle

This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.

Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems
Author: Yousef Saad
Publisher: SIAM
Total Pages: 292
Release: 2011-01-01
Genre: Mathematics
ISBN: 9781611970739

Download Numerical Methods for Large Eigenvalue Problems Book in PDF, Epub and Kindle

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.