Radio Wave Propagation and Parabolic Equation Modeling

Radio Wave Propagation and Parabolic Equation Modeling
Author: Gokhan Apaydin
Publisher: John Wiley & Sons
Total Pages: 161
Release: 2017-08-31
Genre: Science
ISBN: 1119432154

Download Radio Wave Propagation and Parabolic Equation Modeling Book in PDF, Epub and Kindle

An important contribution to the literature that introduces powerful new methods for modeling and simulating radio wave propagation A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various virtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenarios typifying the differing effects of various environments on radio-wave propagation. This valuable text: Addresses groundwave and surface wave propagation Explains radar applications in terms of parabolic equation modeling and simulation approaches Introduces several simple and sophisticated MATLAB scripts Teaches applications that work with a wide range of electromagnetic, acoustic and optical wave propagation modeling Presents the material in a quick-reference format ideal for busy researchers and engineers Radio Wave Propagation and Parabolic Equation Modeling is a critical resource forelectrical, electronics, communication, and computer engineers working on industrial and military applications that rely on the directed propagation of radio waves. It is also a useful reference for advanced engineering students and academic researchers.

Numerical Modeling of Water Waves

Numerical Modeling of Water Waves
Author: Pengzhi Lin
Publisher: CRC Press
Total Pages: 500
Release: 2008-04-30
Genre: Technology & Engineering
ISBN: 1482265915

Download Numerical Modeling of Water Waves Book in PDF, Epub and Kindle

Modelling large-scale wave fields and their interaction with coastal and offshore structures has become much more feasible over the last two decades with increases in computer speeds. Wave modelling can be viewed as an extension of wave theory, a mature and widely published field, applied to practical engineering through the use of computer tools.

Parabolic Wave Equations with Applications

Parabolic Wave Equations with Applications
Author: Michael D. Collins
Publisher: Springer Nature
Total Pages: 135
Release: 2019-11-04
Genre: Science
ISBN: 1493999346

Download Parabolic Wave Equations with Applications Book in PDF, Epub and Kindle

This book introduces parabolic wave equations, their key methods of numerical solution, and applications in seismology and ocean acoustics. The parabolic equation method provides an appealing combination of accuracy and efficiency for many nonseparable wave propagation problems in geophysics. While the parabolic equation method was pioneered in the 1940s by Leontovich and Fock who applied it to radio wave propagation in the atmosphere, it thrived in the 1970s due to its usefulness in seismology and ocean acoustics. The book covers progress made following the parabolic equation’s ascendancy in geophysics. It begins with the necessary preliminaries on the elliptic wave equation and its analysis from which the parabolic wave equation is derived and introduced. Subsequently, the authors demonstrate the use of rational approximation techniques, the Padé solution in particular, to find numerical solutions to the energy-conserving parabolic equation, three-dimensional parabolic equations, and horizontal wave equations. The rest of the book demonstrates applications to seismology, ocean acoustics, and beyond, with coverage of elastic waves, sloping interfaces and boundaries, acousto-gravity waves, and waves in poro-elastic media. Overall, it will be of use to students and researchers in wave propagation, ocean acoustics, geophysical sciences and more.

Advances In Coastal And Ocean Engineering, Vol 2

Advances In Coastal And Ocean Engineering, Vol 2
Author: Philip L-f Liu
Publisher: World Scientific
Total Pages: 290
Release: 1996-07-03
Genre: Technology & Engineering
ISBN: 9814499838

Download Advances In Coastal And Ocean Engineering, Vol 2 Book in PDF, Epub and Kindle

This volume contains six papers discussing coastal processes, and physical and numerical modeling.In the first paper, Svendsen and Putrevu give an extensive review on the state of understanding of surf-zone hydrodynamics, including subjects such as wave breaking, wave-induced currents, and instability of nearshore currents and infragravity waves. They point out that the most urgent need is to develop an adequate theory for wave breaking and broken waves in the surf zone.One of the methods for studying the complex coastal processes is to perform laboratory experiments. However, physical models are always plagued by scale and laboratory effects, because the coastal process involves many different length and time scales. In the second paper, Kamphuis presents a detailed discussion on the sources and implications of the scale and laboratory effects on physical modeling.The third and the fourth papers are two parts of the discussion on the mathematical modeling of the meso-tidal barrier island coasts. To understand the dynamics of coastal inlet systems, one can either rely on empirical knowledge and construct various forms of empirical and semi-empirical models (Part I), or develop a set of mathematical models based on the physical processes (Part II). Although these models do not provide the details of the dynamics, they give valuable knowledge of the equilibrium-state relationships. de Vriend and Ribberink give a detailed review on two models, Initial Sedimentation/Erosion models and Medium-Term Morphodynamic models. They have also presented many examples of applications.In the fifth paper, Houston gives a brief review on different methods to mitigate beach loss caused by storms or persistent long-term erosion. He then describes, in detail, the method of beach nourishment, which is also called a beach fill. This paper discusses the information that must be collected to design a beach fill and that should be monitored after the completion of the project.The last paper of this volume shifts our attention to the design of offshore structures, such as gravity structures, floating barges and tankers. Chakrabarti discusses the effects of the uniform and shear currents on fixed and floating structures.

Advances in Coastal and Ocean Engineering

Advances in Coastal and Ocean Engineering
Author: Philip L. F. Liu
Publisher: World Scientific
Total Pages: 290
Release: 1996
Genre: Technology & Engineering
ISBN: 9810224109

Download Advances in Coastal and Ocean Engineering Book in PDF, Epub and Kindle

This volume contains six papers discussing coastal processes, and physical and numerical modeling.In the first paper, Svendsen and Putrevu give an extensive review on the state of understanding of surf-zone hydrodynamics, including subjects such as wave breaking, wave-induced currents, and instability of nearshore currents and infragravity waves. They point out that the most urgent need is to develop an adequate theory for wave breaking and broken waves in the surf zone.One of the methods for studying the complex coastal processes is to perform laboratory experiments. However, physical models are always plagued by scale and laboratory effects, because the coastal process involves many different length and time scales. In the second paper, Kamphuis presents a detailed discussion on the sources and implications of the scale and laboratory effects on physical modeling.The third and the fourth papers are two parts of the discussion on the mathematical modeling of the meso-tidal barrier island coasts. To understand the dynamics of coastal inlet systems, one can either rely on empirical knowledge and construct various forms of empirical and semi-empirical models (Part I), or develop a set of mathematical models based on the physical processes (Part II). Although these models do not provide the details of the dynamics, they give valuable knowledge of the equilibrium-state relationships. de Vriend and Ribberink give a detailed review on two models, Initial Sedimentation/Erosion models and Medium-Term Morphodynamic models. They have also presented many examples of applications.In the fifth paper, Houston gives a brief review on different methods to mitigate beach loss caused by storms or persistent long-term erosion. He then describes, in detail, the method of beach nourishment, which is also called a beach fill. This paper discusses the information that must be collected to design a beach fill and that should be monitored after the completion of the project.The last paper of this volume shifts our attention to the design of offshore structures, such as gravity structures, floating barges and tankers. Chakrabarti discusses the effects of the uniform and shear currents on fixed and floating structures.

Breaking Waves

Breaking Waves
Author: Michael L. Banner
Publisher: Springer Science & Business Media
Total Pages: 375
Release: 2012-12-06
Genre: Science
ISBN: 3642848478

Download Breaking Waves Book in PDF, Epub and Kindle

Wave breaking is a commonly occurring phenomena associated with wave motion in fluids, often inducing significant effects which are of fundamental and technological importance, A familiar illustration is provided with white-capping and microbreaking of the wind-driven ocean sUrface waves, which is believed to play an important part in the transfers of momentum, mass and heat across the air-sea interface, as well as in the production of underwater ambient noise and augmented microwave backscatter. The enhanced hydrodynamic forces associated with the breaking of the more energetic ocean wave components constitute a significant challenge in ocean engineering, coastal engineering and naval architecture. Other less conspicuous but equally important manifestations are the breaking of internal waves and the fila mentation of vorticity interfaces. Despite recent theoretical and observational progress towards a more complete understanding of wave breaking, mathematical descriptions of its onset and consequences are presently lacking. The aim of this Symposium was to bring together theoretical and observational expertise, with the goal of determining the current state of knowledge of wave breaking and providing a stimulus to future research. The Symposium focused on water waves of all scales from capillary waves to ocean swell, but also considered internal waves and the filamentation of vorticity interfaces. Specific topics included were: Fundamental theoretical studies; wave instabilities; routes to breaking. Models of wave breaking. Field observations, including statistical information. Laboratory studies. Shoaling waves, breaking waves on currents, breaking induced by the motion of a ship.