Numerical Methods for Engine-airframe Integration

Numerical Methods for Engine-airframe Integration
Author: S. N. B. Murthy
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
Total Pages: 568
Release: 1986
Genre: Technology & Engineering
ISBN:

Download Numerical Methods for Engine-airframe Integration Book in PDF, Epub and Kindle

Applied Computational Aerodynamics

Applied Computational Aerodynamics
Author: P. A. Henne
Publisher: AIAA
Total Pages: 970
Release: 1990
Genre: Aerodynamics
ISBN: 9781600863790

Download Applied Computational Aerodynamics Book in PDF, Epub and Kindle

Hypersonic Vehicles

Hypersonic Vehicles
Author: Giuseppe Pezzella
Publisher: BoD – Books on Demand
Total Pages: 150
Release: 2019-10-02
Genre: Science
ISBN: 1839622695

Download Hypersonic Vehicles Book in PDF, Epub and Kindle

In the aviation field there is great interest in high-speed vehicle design. Hypersonic vehicles represent the next frontier of passenger transportation to and from space. However, several design issues must be addressed, including vehicle aerodynamics and aerothermodynamics, aeroshape design optimization, aerodynamic heating, boundary layer transition, and so on. This book contains valuable contributions focusing on hypervelocity aircraft design. Topics covered include hypersonic aircraft aerodynamic and aerothermodynamic design, especially aeroshape design optimization, computational fluid dynamics, and scramjet propulsion. The book also discusses high-speed flow issues and the challenges to achieving the dream of affordable hypersonic travel. It is hoped that the information contained herein will allow for the development of safe and efficient hypersonic vehicles.

Modelling the Aerodynamics of Propulsive System Integration at Cruise and High-lift Conditions

Modelling the Aerodynamics of Propulsive System Integration at Cruise and High-lift Conditions
Author: Thierry Sibilli
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download Modelling the Aerodynamics of Propulsive System Integration at Cruise and High-lift Conditions Book in PDF, Epub and Kindle

Due to a trend towards Ultra High Bypass Ratio engines the corresponding engine/airframe interference is becoming a key aspect in aircraft design. The present economic situation increases the pressure on commercial aviation companies to reduce the Direct Operating Cost, and the environmental situation requires a new generation of aircraft with a lower environmental impact. Therefore detailed aerodynamic investigations are required to evaluate the real benefits of new technologies. The presented research activity is part of a long-term project with the main objective of generating a reliable and accurate tool to predict the performance of an aircraft over the whole flight domain. In particular the aim of this research was to perform advanced CFD in order to establish a tool able to evaluate engine installation effects for different configurations and attitudes. The developed tool can be provided with correlations of the Net Propulsive Force (NPF), the force exerted by the power-plant to the aircraft, as a function of position. This can be done in principle at cruise, hold, climb, descent, take-off and landing, to model the different integration effects at different phases. Due to the complexity of the problem it was only possible at an initial stage to determine these correlations at cruise condition. Two parametric test cases were evaluated, showing that the engine horizontal positioning can influence the mission fuel burn by up to 6.4%. According to the extensive literature review that has been done, this study can be regarded as the first open literature engine position-NPF parametric study using CFD. Even though no correlations were extracted for other conditions; a deployed high-lift wing configuration was also studied in detail, defining the main aerodynamics effects of the engine integration at high angle of attack. A topological study of the high-lift installation vortices is presented in this work and it can be considered the first in the open literature. It should be pointed out that extensive research is currently underway to correctly evaluate the high-lift aerodynamic using CFD. The Propulsive System Integration (PSI) in high-lift conditions is adding flow features to an already demanding problem, making it a real challenge for the numerical methods. Nevertheless the additional effects of a nacelle chine on the maximum lift were also evaluated. The main outcomes of this PhD research were: a coupled performance modelling tool able to handle the effects of engine-airframe integration as a function of geometry and attitude, and a topological study of the high-lift installation vortices. During the course of the work, this research was successfully suggested as an extra activity for the European NEWAC project (New Aero Engine Core Concepts), and resulted in a new deliverable for that project.

Computational Approaches for Aerospace Design

Computational Approaches for Aerospace Design
Author: Andy Keane
Publisher: John Wiley & Sons
Total Pages: 602
Release: 2005-08-05
Genre: Technology & Engineering
ISBN: 0470855479

Download Computational Approaches for Aerospace Design Book in PDF, Epub and Kindle

Over the last fifty years, the ability to carry out analysis as a precursor to decision making in engineering design has increased dramatically. In particular, the advent of modern computing systems and the development of advanced numerical methods have made computational modelling a vital tool for producing optimized designs. This text explores how computer-aided analysis has revolutionized aerospace engineering, providing a comprehensive coverage of the latest technologies underpinning advanced computational design. Worked case studies and over 500 references to the primary research literature allow the reader to gain a full understanding of the technology, giving a valuable insight into the world’s most complex engineering systems. Key Features: Includes background information on the history of aerospace design and established optimization, geometrical and mathematical modelling techniques, setting recent engineering developments in a relevant context. Examines the latest methods such as evolutionary and response surface based optimization, adjoint and numerically differentiated sensitivity codes, uncertainty analysis, and concurrent systems integration schemes using grid-based computing. Methods are illustrated with real-world applications of structural statics, dynamics and fluid mechanics to satellite, aircraft and aero-engine design problems. Senior undergraduate and postgraduate engineering students taking courses in aerospace, vehicle and engine design will find this a valuable resource. It will also be useful for practising engineers and researchers working on computational approaches to design.

Aircraft Propulsion

Aircraft Propulsion
Author: Saeed Farokhi
Publisher: John Wiley & Sons
Total Pages: 1052
Release: 2014-05-27
Genre: Technology & Engineering
ISBN: 1118806778

Download Aircraft Propulsion Book in PDF, Epub and Kindle

New edition of the successful textbook updated to include new material on UAVs, design guidelines in aircraft engine component systems and additional end of chapter problems Aircraft Propulsion, Second Edition follows the successful first edition textbook with comprehensive treatment of the subjects in airbreathing propulsion, from the basic principles to more advanced treatments in engine components and system integration. This new edition has been extensively updated to include a number of new and important topics. A chapter is now included on General Aviation and Uninhabited Aerial Vehicle (UAV) Propulsion Systems that includes a discussion on electric and hybrid propulsion. Propeller theory is added to the presentation of turboprop engines. A new section in cycle analysis treats Ultra-High Bypass (UHB) and Geared Turbofan engines. New material on drop-in biofuels and design for sustainability is added to refl ect the FAA’s 2025 Vision. In addition, the design guidelines in aircraft engine components are expanded to make the book user friendly for engine designers. Extensive review material and derivations are included to help the reader navigate through the subject with ease. Key features: General Aviation and UAV Propulsion Systems are presented in a new chapter Discusses Ultra-High Bypass and Geared Turbofan engines Presents alternative drop-in jet fuels Expands on engine components' design guidelines The end-of-chapter problem sets have been increased by nearly 50% and solutions are available on a companion website Presents a new section on engine performance testing and instrumentation Includes a new 10-Minute Quiz appendix (with 45 quizzes) that can be used as a continuous assessment and improvement tool in teaching/learning propulsion principles and concepts Includes a new appendix on Rules of Thumb and Trends in aircraft propulsion Aircraft Propulsion, Second Edition is a must-have textbook for graduate and undergraduate students, and is also an excellent source of information for researchers and practitioners in the aerospace and power industry.