Numerical Methods for Energy Applications

Numerical Methods for Energy Applications
Author: Naser Mahdavi Tabatabaei
Publisher: Springer Nature
Total Pages: 1033
Release: 2021-03-22
Genre: Technology & Engineering
ISBN: 303062191X

Download Numerical Methods for Energy Applications Book in PDF, Epub and Kindle

This book provides a thorough guide to the use of numerical methods in energy systems and applications. It presents methods for analysing engineering applications for energy systems, discussing finite difference, finite element, and other advanced numerical methods. Solutions to technical problems relating the application of these methods to energy systems are also thoroughly explored. Readers will discover diverse perspectives of the contributing authors and extensive discussions of issues including: • a wide variety of numerical methods concepts and related energy systems applications;• systems equations and optimization, partial differential equations, and finite difference method;• methods for solving nonlinear equations, special methods, and their mathematical implementation in multi-energy sources;• numerical investigations of electrochemical fields and devices; and• issues related to numerical approaches and optimal integration of energy consumption. This is a highly informative and carefully presented book, providing scientific and academic insight for readers with an interest in numerical methods and energy systems.

Open Channel Flow

Open Channel Flow
Author: Roland Jeppson
Publisher: CRC Press
Total Pages: 1238
Release: 2010-11-09
Genre: Science
ISBN: 148228216X

Download Open Channel Flow Book in PDF, Epub and Kindle

A comprehensive treatment of open channel flow, Open Channel Flow: Numerical Methods and Computer Applications starts with basic principles and gradually advances to complete problems involving systems of channels with branches, controls, and outflows/ inflows that require the simultaneous solutions of systems of nonlinear algebraic equations coupled with differential equations. The book includes downloadable resources that contain a program that solves all types of simple open channel flow problems, the source programs described in the text, the executable elements of these programs, the TK-Solver and MathCad programs, and the equivalent MATLAB® scripts and functions. The book provides applied numerical methods in an appendix and also incorporates them as an integral component of the methodology in setting up and solving the governing equations. Packed with examples, the book includes problems at the end of each chapter that give readers experience in applying the principles and often expand upon the methodologies use in the text. The author uses Fortran as the software to supply the computer instruction but covers math software packages such as MathCad, TK-Solver, MATLAB, and spreadsheets so that readers can use the instruments with which they are the most familiar. He emphasizes the basic principles of conservation of mass, energy, and momentum, helping readers achieve true mastery of this important subject, rather than just learn routine techniques. With the enhanced understanding of the fundamental principles of fluid mechanics provided by this book, readers can then apply these principles to the solution of complex real-world problems. The book supplies the knowledge tools necessary to analyze and design economical and properly performing conveyance systems. Thus not only is the book useful for graduate students, but it also provides professional engineers the expertise and knowledge to design well performing and economical channel systems.

Numerical Methods for Fluid Dynamics

Numerical Methods for Fluid Dynamics
Author: Dale R. Durran
Publisher: Springer Science & Business Media
Total Pages: 516
Release: 2010-09-14
Genre: Mathematics
ISBN: 1441964126

Download Numerical Methods for Fluid Dynamics Book in PDF, Epub and Kindle

This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

CFD Techniques and Energy Applications

CFD Techniques and Energy Applications
Author: Zied Driss
Publisher: Springer
Total Pages: 194
Release: 2018-02-22
Genre: Technology & Engineering
ISBN: 331970950X

Download CFD Techniques and Energy Applications Book in PDF, Epub and Kindle

This book focuses on CFD (Computational Fluid Dynamics) techniques and the recent developments and research works in energy applications. It is devoted to the publication of basic and applied studies broadly related to this area. The chapters present the development of numerical methods, computational techniques, and case studies in the energy applications. Also, they offer the fundamental knowledge for using CFD in energy applications through new technical approaches. Besides, they describe the CFD process steps and provide benefits and issues for using CFD analysis in understanding the flow complicated phenomena and its use in the design process. The best practices for reducing errors and uncertainties in the CFD analysis are further described. The book reveals not only the recent advances and future research trends of CFD Techniques but also provides the reader with valuable information about energy applications. It aims to provide the readers, such as engineers and PhD students, with the fundamentals of CFD prior to embarking on any real simulation project. Additionally, engineers supporting or being supported by CFD analysts can take advantage from the information of the book’s different chapters. ​

Numerical Methods

Numerical Methods
Author: Rajesh Kumar Gupta
Publisher: Cambridge University Press
Total Pages: 829
Release: 2019-05-09
Genre: Mathematics
ISBN: 1108716008

Download Numerical Methods Book in PDF, Epub and Kindle

Offers a comprehensive textbook for a course in numerical methods, numerical analysis and numerical techniques for undergraduate engineering students.

Numerical Methods in Finance

Numerical Methods in Finance
Author: René Carmona
Publisher: Springer Science & Business Media
Total Pages: 478
Release: 2012-03-23
Genre: Mathematics
ISBN: 3642257461

Download Numerical Methods in Finance Book in PDF, Epub and Kindle

Numerical methods in finance have emerged as a vital field at the crossroads of probability theory, finance and numerical analysis. Based on presentations given at the workshop Numerical Methods in Finance held at the INRIA Bordeaux (France) on June 1-2, 2010, this book provides an overview of the major new advances in the numerical treatment of instruments with American exercises. Naturally it covers the most recent research on the mathematical theory and the practical applications of optimal stopping problems as they relate to financial applications. By extension, it also provides an original treatment of Monte Carlo methods for the recursive computation of conditional expectations and solutions of BSDEs and generalized multiple optimal stopping problems and their applications to the valuation of energy derivatives and assets. The articles were carefully written in a pedagogical style and a reasonably self-contained manner. The book is geared toward quantitative analysts, probabilists, and applied mathematicians interested in financial applications.

Advanced Numerical Methods in Applied Sciences

Advanced Numerical Methods in Applied Sciences
Author: Luigi Brugnano
Publisher: MDPI
Total Pages: 306
Release: 2019-06-20
Genre: Juvenile Nonfiction
ISBN: 3038976660

Download Advanced Numerical Methods in Applied Sciences Book in PDF, Epub and Kindle

The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.

Multiphysics Modeling: Numerical Methods and Engineering Applications

Multiphysics Modeling: Numerical Methods and Engineering Applications
Author: Qun Zhang
Publisher: Elsevier
Total Pages: 440
Release: 2015-12-15
Genre: Technology & Engineering
ISBN: 0124077374

Download Multiphysics Modeling: Numerical Methods and Engineering Applications Book in PDF, Epub and Kindle

Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume Provides a go-to resource for coupling and multiphysics problems Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering

Numerical Analysis of Power System Transients and Dynamics

Numerical Analysis of Power System Transients and Dynamics
Author: Akihiro Ametani
Publisher: IET
Total Pages: 541
Release: 2015-01-30
Genre: Business & Economics
ISBN: 1849198497

Download Numerical Analysis of Power System Transients and Dynamics Book in PDF, Epub and Kindle

The transient analysis of electrical networks has become very important for both HVAC and HVDC systems, due to significant changes introduced through the connection of renewable energy sources. Numerical Analysis of Power System Transients and Dynamics describes the three major power system transient and dynamics simulation tools based on a circuit-theory based approach which are most widely used all over the world (EMTP-ATP, EMTP-RV and EMTDC/PSCAD), together with another powerful simulation tool called numerical electromagnetic analysis method. This book is ideal for researchers involved in the analysis of power systems for development and optimization, and will also be of interest to professionals and Ph. D. students working with power systems.

Gas-Particle and Granular Flow Systems

Gas-Particle and Granular Flow Systems
Author: Nan Gui
Publisher: Elsevier
Total Pages: 386
Release: 2019-10-22
Genre: Computers
ISBN: 0128163992

Download Gas-Particle and Granular Flow Systems Book in PDF, Epub and Kindle

Gas-Particle and Granular Flow Systems: Coupled Numerical Methods and Applications breaks down complexities, details numerical methods (including basic theory, modeling and techniques in programming), and provides researchers with an introduction and starting point to each of the disciplines involved. As the modeling of gas-particle and granular flow systems is an emerging interdisciplinary field of study involving mathematics, numerical methods, computational science, and mechanical, chemical and nuclear engineering, this book provides an ideal resource for new researchers who are often intimidated by the complexities of fluid-particle, particle-particle, and particle-wall interactions in many disciplines. Presents the most recent advances in modeling of gas-particle and granular flow systems Features detailed and multidisciplinary case studies at the conclusion of each chapter to underscore key concepts Discusses coupled methods of particle and granular flow systems theory and includes advanced modeling tools and numerical techniques