Numerical Methods and Modelling for Engineering

Numerical Methods and Modelling for Engineering
Author: Richard Khoury
Publisher: Springer
Total Pages: 332
Release: 2016-05-11
Genre: Technology & Engineering
ISBN: 3319211765

Download Numerical Methods and Modelling for Engineering Book in PDF, Epub and Kindle

This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems.

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids
Author: Laura De Lorenzis
Publisher: Springer Nature
Total Pages: 225
Release: 2020-02-08
Genre: Science
ISBN: 3030375188

Download Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids Book in PDF, Epub and Kindle

The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.

Numerical Methods for Nonlinear Engineering Models

Numerical Methods for Nonlinear Engineering Models
Author: John R. Hauser
Publisher: Springer Science & Business Media
Total Pages: 1013
Release: 2009-03-24
Genre: Technology & Engineering
ISBN: 1402099207

Download Numerical Methods for Nonlinear Engineering Models Book in PDF, Epub and Kindle

There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.

Multiphysics Modeling: Numerical Methods and Engineering Applications

Multiphysics Modeling: Numerical Methods and Engineering Applications
Author: Qun Zhang
Publisher: Elsevier
Total Pages: 440
Release: 2015-12-15
Genre: Technology & Engineering
ISBN: 0124077374

Download Multiphysics Modeling: Numerical Methods and Engineering Applications Book in PDF, Epub and Kindle

Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series describes the basic principles and methods for multiphysics modeling, covering related areas of physics such as structure mechanics, fluid dynamics, heat transfer, electromagnetic field, and noise. The book provides the latest information on basic numerical methods, also considering coupled problems spanning fluid-solid interaction, thermal-stress coupling, fluid-solid-thermal coupling, electromagnetic solid thermal fluid coupling, and structure-noise coupling. Users will find a comprehensive book that covers background theory, algorithms, key technologies, and applications for each coupling method. Presents a wealth of multiphysics modeling methods, issues, and worked examples in a single volume Provides a go-to resource for coupling and multiphysics problems Covers the multiphysics details not touched upon in broader numerical methods references, including load transfer between physics, element level strong coupling, and interface strong coupling, amongst others Discusses practical applications throughout and tackles real-life multiphysics problems across areas such as automotive, aerospace, and biomedical engineering

Introduction to Modeling and Numerical Methods for Biomedical and Chemical Engineers

Introduction to Modeling and Numerical Methods for Biomedical and Chemical Engineers
Author: Edward Gatzke
Publisher: Springer Nature
Total Pages: 292
Release:
Genre: Biomedical engineering
ISBN: 3030764494

Download Introduction to Modeling and Numerical Methods for Biomedical and Chemical Engineers Book in PDF, Epub and Kindle

This textbook introduces the concepts and tools that biomedical and chemical engineering students need to know in order to translate engineering problems into a numerical representation using scientific fundamentals. Modeling concepts focus on problems that are directly related to biomedical and chemical engineering. A variety of computational tools are presented, including MATLAB, Excel, Mathcad, and COMSOL, and a brief introduction to each tool is accompanied by multiple computer lab experiences. The numerical methods covered are basic linear algebra and basic statistics, and traditional methods like Newton's method, Euler Integration, and trapezoidal integration. The book presents the reader with numerous examples and worked problems, and practice problems are included at the end of each chapter. Focuses on problems and methods unique to biomedical and chemical engineering; Presents modeling concepts drawn from chemical, mechanical, and materials engineering; Ancillary materials include lecture notes and slides and online videos that enable a flipped classroom or individual study.

Computational Engineering - Introduction to Numerical Methods

Computational Engineering - Introduction to Numerical Methods
Author: Michael Schäfer
Publisher: Springer Nature
Total Pages: 374
Release: 2021-07-19
Genre: Technology & Engineering
ISBN: 3030760278

Download Computational Engineering - Introduction to Numerical Methods Book in PDF, Epub and Kindle

Numerical simulation methods in all engineering disciplines gains more and more importance. The successful and efficient application of such tools requires certain basic knowledge about the underlying numerical techniques. The text gives a practice-oriented introduction in modern numerical methods as they typically are applied in mechanical, chemical, or civil engineering. Problems from heat transfer, structural mechanics, and fluid mechanics constitute a thematical focus of the text. For the basic understanding of the topic aspects of numerical mathematics, natural sciences, computer science, and the corresponding engineering area are simultaneously important. Usually, the necessary information is distributed in different textbooks from the individual disciplines. In the present text the subject matter is presented in a comprehensive multidisciplinary way, where aspects from the different fields are treated insofar as it is necessary for general understanding. Overarching aspects and important questions related to accuracy, efficiency, and cost effectiveness are discussed. The topics are presented in an introductory manner, such that besides basic mathematical standard knowledge in analysis and linear algebra no further prerequisites are necessary. The book is suitable either for self-study or as an accompanying textbook for corresponding lectures. It can be useful for students of engineering disciplines as well as for computational engineers in industrial practice.

Numerical Analysis and Modelling in Geomechanics

Numerical Analysis and Modelling in Geomechanics
Author: John W. Bull
Publisher: CRC Press
Total Pages: 397
Release: 2003-09-02
Genre: Architecture
ISBN: 0203471288

Download Numerical Analysis and Modelling in Geomechanics Book in PDF, Epub and Kindle

In geomechanics, existing design methods are very much dependent upon sophisticated on-site techniques to assess ground conditions. This book describes numerical analysis, computer simulation and modelling that can be used to answer some highly complex questions associated with geomechanics. The contributors, who are all international experts in the field, also give insights into the future directions of these methods. Numerical Analysis and Modelling in Geomechanics will appeal to professional engineers involved in designing and building both onshore and offshore structures, where geomechanical considerations may well be outside the usual codes of practice, and therefore specialist advice is required. Postgraduate researchers, degree students carrying out project work in this area will also find the book an invaluable resource.

Fundamentals of Engineering Numerical Analysis

Fundamentals of Engineering Numerical Analysis
Author: Parviz Moin
Publisher: Cambridge University Press
Total Pages:
Release: 2010-08-23
Genre: Technology & Engineering
ISBN: 1139489550

Download Fundamentals of Engineering Numerical Analysis Book in PDF, Epub and Kindle

Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.

Advanced Numerical Methods for Differential Equations

Advanced Numerical Methods for Differential Equations
Author: Harendra Singh
Publisher: CRC Press
Total Pages: 336
Release: 2021-07-29
Genre: Mathematics
ISBN: 1000381080

Download Advanced Numerical Methods for Differential Equations Book in PDF, Epub and Kindle

Mathematical models are used to convert real-life problems using mathematical concepts and language. These models are governed by differential equations whose solutions make it easy to understand real-life problems and can be applied to engineering and science disciplines. This book presents numerical methods for solving various mathematical models. This book offers real-life applications, includes research problems on numerical treatment, and shows how to develop the numerical methods for solving problems. The book also covers theory and applications in engineering and science. Engineers, mathematicians, scientists, and researchers working on real-life mathematical problems will find this book useful.

Modeling and Computational Methods for Kinetic Equations

Modeling and Computational Methods for Kinetic Equations
Author: Pierre Degond
Publisher: Springer Science & Business Media
Total Pages: 360
Release: 2012-12-06
Genre: Mathematics
ISBN: 0817682007

Download Modeling and Computational Methods for Kinetic Equations Book in PDF, Epub and Kindle

In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused works. Specific applications presented include plasma kinetic models, traffic flow models, granular media models, and coagulation-fragmentation problems. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.