Numerical Continuation and Bifurcation in Nonlinear PDEs

Numerical Continuation and Bifurcation in Nonlinear PDEs
Author: Hannes Uecker
Publisher: SIAM
Total Pages: 380
Release: 2021-08-19
Genre: Mathematics
ISBN: 1611976618

Download Numerical Continuation and Bifurcation in Nonlinear PDEs Book in PDF, Epub and Kindle

This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.

Introduction to Numerical Continuation Methods

Introduction to Numerical Continuation Methods
Author: Eugene L. Allgower
Publisher: SIAM
Total Pages: 409
Release: 2003-01-01
Genre: Mathematics
ISBN: 089871544X

Download Introduction to Numerical Continuation Methods Book in PDF, Epub and Kindle

Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. Introduction to Numerical Continuation Methods also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals.

Numerical Continuation Methods for Dynamical Systems

Numerical Continuation Methods for Dynamical Systems
Author: Bernd Krauskopf
Publisher: Springer
Total Pages: 399
Release: 2007-11-06
Genre: Science
ISBN: 1402063563

Download Numerical Continuation Methods for Dynamical Systems Book in PDF, Epub and Kindle

Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.

Numerical Methods for Bifurcations of Dynamical Equilibria

Numerical Methods for Bifurcations of Dynamical Equilibria
Author: Willy J. F. Govaerts
Publisher: SIAM
Total Pages: 384
Release: 2000-01-01
Genre: Mathematics
ISBN: 9780898719543

Download Numerical Methods for Bifurcations of Dynamical Equilibria Book in PDF, Epub and Kindle

Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.

Nonlinear PDEs: A Dynamical Systems Approach

Nonlinear PDEs: A Dynamical Systems Approach
Author: Guido Schneider
Publisher: American Mathematical Soc.
Total Pages: 575
Release: 2017-10-26
Genre: Differential equations, Nonlinear
ISBN: 1470436132

Download Nonlinear PDEs: A Dynamical Systems Approach Book in PDF, Epub and Kindle

This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.

Continuation and Bifurcations: Numerical Techniques and Applications

Continuation and Bifurcations: Numerical Techniques and Applications
Author: Dirk Roose
Publisher: Springer Science & Business Media
Total Pages: 415
Release: 2012-12-06
Genre: Mathematics
ISBN: 9400906595

Download Continuation and Bifurcations: Numerical Techniques and Applications Book in PDF, Epub and Kindle

Proceedings of the NATO Advanced Research Workshop, Leuven, Belgium, September 18-22, 1989

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory
Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
Total Pages: 648
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475739788

Download Elements of Applied Bifurcation Theory Book in PDF, Epub and Kindle

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems
Author: Robert A. Meyers
Publisher: Springer Science & Business Media
Total Pages: 1885
Release: 2011-10-05
Genre: Mathematics
ISBN: 1461418054

Download Mathematics of Complexity and Dynamical Systems Book in PDF, Epub and Kindle

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

Numerical Continuation Methods

Numerical Continuation Methods
Author: Eugene L. Allgower
Publisher: Springer Science & Business Media
Total Pages: 402
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642612571

Download Numerical Continuation Methods Book in PDF, Epub and Kindle

Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.

Partial Differential Equations

Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
Total Pages: 467
Release: 2007-12-21
Genre: Mathematics
ISBN: 0470054565

Download Partial Differential Equations Book in PDF, Epub and Kindle

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.